Unsteady Heating of Rayleigh-Benard Convection

2004 ◽  
Vol 59 (4-5) ◽  
pp. 266-274
Author(s):  
B. S. Bhadauria

The linear thermal instability of a horizontal fluid layer with time-periodic temperature distribution is studied with the help of the Floquet theory. The time-dependent part of the temperature has been expressed in Fourier series. Disturbances are assumed to be infinitesimal. Only even solutions are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. It is found that the disturbances are either synchronous with the primary temperature field or have half its frequency. - 2000 Mathematics Subject Classification: 76E06, 76R10.

2003 ◽  
Vol 58 (2-3) ◽  
pp. 176-182
Author(s):  
B. S. Bhadauria

The linear stability of a horizontal fluid layer, confined between two rigid walls, heated from below and cooled from above is considered. The temperature gradient between the walls consists of a steady part and a periodic part that oscillates with time. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained for various Prandtl numbers and for various values of the frequency. Some comparisons with known results have also been made.


2003 ◽  
pp. 29-40 ◽  
Author(s):  
Jürgen Zierep

We discuss the solution of the small perturbation equations for a horizontal fluid layer heated from below with an applied magnetic field either in vertical or in horizontal direction. The magnetic field stabilizes, due to the Lorentz force, more or less Rayleigh-B?nard convective cellular motion. The solution of the eigenvalue problem shows that the critical Rayleigh number increases with increasing Hartmann number while the corresponding wave length decreases. Interesting analogies to solar granulation and black spots phenomena are obvious. The influence of a horizontal field is stronger than that of a vertical field. It is easy to understand this by discussing the influence of the Lorentz force on the Rayleigh-B?nard convection. This result corrects earlier calculations in the literature.


2004 ◽  
Vol 2004 (19) ◽  
pp. 991-1001 ◽  
Author(s):  
B. S. Bhadauria ◽  
Lokenath Debnath

The linear stability of a horizontal layer of fluid heated from below and above is considered. In addition to a steady temperature difference between the walls of the fluid layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. Some comparisons have been made with the known results.


2008 ◽  
Vol 50 (2) ◽  
pp. 231-245 ◽  
Author(s):  
JITENDER SINGH ◽  
RENU BAJAJ

AbstractThe stability characteristics of an infinite horizontal fluid layer excited by a time-periodic, sinusoidally varying free-boundary temperature, have been investigated numerically using the Floquet theory. It has been found that the modulation of the temperature gradient across the fluid layer affects the onset of the Rayleigh–Bénard convection. Modulation can give rise to instability in the subcritical conditions and it can also suppress the instability in the supercritical cases. The instability in the fluid layer manifests itself in the form of either a harmonic or subharmonic flow, controlled by thermal modulation.


1984 ◽  
Vol 146 ◽  
pp. 115-125 ◽  
Author(s):  
F. H. Busse ◽  
E. W. Bolton

The stability properties of steady two-dimensional solutions describing convection in a horizontal fluid layer heated from below with stress-free boundaries are investigated in the neighbourhood of the critical Rayleigh number. The region of stable convection rolls as a function of the wavenumber α and the Rayleigh number R is bounded towards higher α by the monotonic skewed varicose instability, while towards low wavenumbers stability is limited by the zigzag instability or by the oscillatory skewed varicose instability. Only for a limited range of Prandtl numbers, 0·543 < P < ∞, does a finite domain of stability exist. In particular, convection rolls with the critical wavenumber αc are always unstable.


2005 ◽  
Vol 60 (8-9) ◽  
pp. 583-592 ◽  
Author(s):  
Beer Singh Bhadauria

Thermal instability in a horizontal layer of an electrically conducting fluid heated from below has been investigated under the effects of uniform rotation about a vertical axis and an applied uniform vertical magnetic field. The temperature field between the walls of the fluid layer consists of two parts; a steady part and a time-dependent part, which varies periodically. The effect of modulation of the walls temperature on the onset of convection has been studied using Floquets theory. Stabilizing and destabilizing effects on the onset of convective instability have been found. Some comparisons have been made. - 2000 Mathematics Subject Classification: 76E06, 76R10.


1984 ◽  
Vol 143 ◽  
pp. 125-152 ◽  
Author(s):  
P. G. Daniels

This paper considers the temporal evolution of two-dimensional Rayleigh–Bénard convection in a shallow fluid layer of aspect ratio 2L ([Gt ] 1) confined laterally by rigid sidewalls. Recent studies by Cross et al. (1980, 1983) have shown that for Rayleigh numbers in the range R = R0 + O(L−1) (where R0 is the critical Rayleigh number for the corresponding infinite layer) there exists a class of finite-amplitude steady-state ‘phase-winding’ solutions which correspond physically to the possibility of an adjustment in the number of rolls in the container as the local value of the Rayleigh number is varied. It has been shown (Daniels 1981) that in the temporal evolution of the system the final lateral positioning of the rolls occurs on the long timescale t = O(L2) when the phase function which determines the number of rolls in the system satisfies a one-dimensional diffusion equation but with novel boundary conditions that represent the effect of the sidewalls. In the present paper this system is solved numerically in order to determine the precise way in which the roll pattern adjusts after a change in the Rayleigh number of the system. There is an interesting balance between, on the one hand, a tendency for the number of rolls to change by the least number possible and, on the other, a tendency for the even or odd nature of the initial configuration to be preserved during the transition. In some cases this second property renders the natural evolution susceptible to arbitrarily small external disturbances, which then dictate the form of the final roll pattern.The complete transition involves an analysis of the motion on three timescales, a conductive scale t = O(1), a convective growth scale t = O(L) and a convective diffusion scale t = O(L2).


2012 ◽  
Vol 691 ◽  
pp. 568-582 ◽  
Author(s):  
E. M. King ◽  
S. Stellmach ◽  
J. M. Aurnou

AbstractTurbulent, rapidly rotating convection has been of interest for decades, yet there exists no generally accepted scaling law for heat transfer behaviour in this system. Here, we develop an exact scaling law for heat transfer by geostrophic convection, $\mathit{Nu}= \mathop{ (\mathit{Ra}/ {\mathit{Ra}}_{c} )}\nolimits ^{3} = 0. 0023\hspace{0.167em} {\mathit{Ra}}^{3} {E}^{4} $, by considering the stability of the thermal boundary layers, where $\mathit{Nu}$, $\mathit{Ra}$ and $E$ are the Nusselt, Rayleigh and Ekman numbers, respectively, and ${\mathit{Ra}}_{c} $ is the critical Rayleigh number for the onset of convection. Furthermore, we use the scaling behaviour of the thermal and Ekman boundary layer thicknesses to quantify the necessary conditions for geostrophic convection: $\mathit{Ra}\lesssim {E}^{\ensuremath{-} 3/ 2} $. Interestingly, the predictions of both heat flux and regime transition do not depend on the total height of the fluid layer. We test these scaling arguments with data from laboratory and numerical experiments. Adequate agreement is found between theory and experiment, although there is a paucity of convection data for low $\mathit{Ra}\hspace{0.167em} {E}^{3/ 2} $.


Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Bénard problem of an infinite fluid layer heated from below and cooled from above can be significantly increased through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid’s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary’s temperature or velocity are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behaviour at relatively low Rayleigh numbers.


2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


Sign in / Sign up

Export Citation Format

Share Document