scholarly journals Computational Analysis of Lung and Isolated Airway Bifurcations under Mechanical Ventilation and Normal Breathing

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 388
Author(s):  
Jongwon Kim ◽  
Ramana M. Pidaparti

Mechanical ventilation is required for many patients who cannot breathe normally as a result of lung disease and other factors that result in reduced lung function. In this study, we investigated the effects of mechanical ventilation and normal breathing on whole lung geometry as well as isolated bifurcations through computational fluid dynamic (CFD) simulations. Results of flow characteristics (airflow velocity, wall pressure, and wall shear stress) obtained from the CFD simulations are presented. Similar flow patterns and pressure drops were obtained between the whole lung geometry and isolated bifurcations under both normal breathing and mechanical ventilation, respectively. Results obtained from simulations suggest that analyzing specific local bifurcations may be a more feasible alternative as it may reduce the computational time and numerical errors resulting from computations as compared to simulating a complex whole lung geometry. The approach presented in this study also demonstrated that analyses of isolated bifurcations gave similar flow characteristics to that of whole lung geometry. Therefore, this approach may be useful for quickly obtaining results that will assist in making clinical predictions and other applications.

2016 ◽  
Vol 11 (4) ◽  
pp. 721-727
Author(s):  
Johnny Ong King Ngu ◽  
Darrien Yau Seng Mah ◽  
Charles Hin Joo Bong

In this paper the flow characteristics of stormwater are analyzed as it travels from a roof gutter down-pipe and the turbulent flow generated on entering an individual lot on-site stormwater detention (OSD) unit beneath a residential carport. Comparison was made between a full-scale model and computational fluid dynamic (CFD) simulations to determine the flow characteristics. These modular tanks with multi-unit chambers can capture the roof run-off from a 15-minute, 10-year return period storm. The results from the physical and CFD models matched well, suggesting that turbulent flow occurs when stormwater is directed to an individual lot stormwater detention tank. However, turbulence in the OSD was concentrated around the inlet, after which the pattern changed from turbulent to laminar flow. This work implies that the use of modular underground storage tanks is practical for managing stormwater from a roof.


2021 ◽  
Author(s):  
Koldo Portal-Porras ◽  
Unai Fernandez-Gamiz ◽  
Ekaitz Zulueta ◽  
Alejandro Ballesteros-Coll ◽  
Asier Zulueta

Abstract Wind energy has become an important source of electricity generation, with the aim of achieving a cleaner and more sustainable energy model. However, wind turbine performance improvement is required to compete with conventional energy resources. To achieve this improvement, flow control devices are implemented on airfoils. Computational Fluid Dynamics (CFD) simulations are the most popular method for analyzing this kind of devices, but in recent years, with the growth of Artificial Intelligence, predicting flow characteristics using neural networks is becoming increasingly popular. In this work, 158 different CFD simulations of a DU91W(2)250 airfoil are conducted, with two different flow control devices, rotating microtabs and Gurney flaps, added on its Trailing Edge (TE). These flow control devices are implemented by using the cell-set meshing technique. These simulations are used to train and test a Convolutional Neural Network (CNN) for velocity and pressure field prediction and another CNN for aerodynamic coefficient prediction. The results show that the proposed CNN for field prediction is able to accurately predict the main characteristics of the flow around the flow control device, showing very slight errors. Regarding the aerodynamic coefficients, the proposed CNN is also capable to predict them reliably, being able to properly predict both the trend and the values. In comparison with CFD simulations, the use of the CNNs reduces the computational time in four orders of magnitude.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Matteo Lizzoli ◽  
Walter Borreani ◽  
Francesco Devia ◽  
Guglielmo Lomonaco ◽  
Mariano Tarantino

The CFD analysis of a Venturi nozzle operating in LBE (key component of the CIRCE facility, owned by ENEA) is presented in this paper. CIRCE is a facility developed to investigate in detail the fluid-dynamic behavior of ADS and/or LFR reactor plants. The initial CFD simulations have been developed hand in hand with the comparison with experimental data: the test results were used to confirm the reliability of the CFD model, which, in turn, was used to improve the interpretation of the experimental data. The Venturi nozzle is modeled with a 3D CFD code (STAR-CCM+). Later on, the CFD model has been used to assess the performance of the component in conditions different from the ones tested in CIRCE: the performance of the Venturi is presented, in terms of pressure drops, for various operating conditions. Finally, the CFD analysis has been focused on the evaluation of the effects of the injection of an inert gas in the flow of the liquid coolant on the performance of the Venturi nozzle.


Author(s):  
Véronique Peiffer ◽  
Peter D. Weinberg ◽  
Spencer J. Sherwin

Haemodynamic stresses acting on the arterial wall may play an important role in the initiation and development of atherosclerosis, and in particular are likely to explain its focal occurrence. Computational fluid dynamic (CFD) simulations of blood flow in arteries have been widely used to investigate this relation and a variety of metrics have been derived to link flow characteristics with lesion prevalence [1]. Although the initial focus was on the magnitude of the time-averaged wall shear stress (TAWSS), an oscillatory shear index (OSI) was subsequently introduced “to describe the shear stress acting in directions other than the direction of the temporal mean shear stress vector” [2]. Biological evidence suggests that flow without a definite direction, in contrast to shear with a clear direction (whether resulting from steady or pulsatile flow), causes sustained molecular signaling of pro-inflammatory and proliferative pathways [3]. Although the OSI has frequently been used to quantify the extent of disturbed flow, we emphasise that no singular metric can fully characterise the flow environment; in particular, we and other research groups [4] note that OSI and other similar metrics are unable to distinguish between simple uniaxial flows (which can be purely forward flowing or reversing) and multi-directional flows, which we term “truly disturbed”. We propose a new method that has this potential, and which complements existing metrics. The new method may help investigations of the importance of flow directionality.


2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


2017 ◽  
Vol 118 (5) ◽  
pp. 2770-2788 ◽  
Author(s):  
David M. Coppola ◽  
Brittaney E. Ritchie ◽  
Brent A. Craven

The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459–473, 1942; Adrian ED. Br Med Bull 6: 330–332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the “sorption hypothesis” exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response “maps” to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory “fovea” hypotheses are discussed in light of these findings. NEW & NOTEWORTHY Two classical ideas concerning olfaction’s receptor-surface two-dimensional organization—the sorption and olfactory fovea hypotheses—were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.


2017 ◽  
Vol 25 (0) ◽  
pp. 13-17 ◽  
Author(s):  
Ruihua Yang ◽  
Weidong Gao ◽  
Yuan Xue

Rotor spun composite yarn shows compound performances when combined with staple fibres and filaments, such as excellent hand feeling as well as extreme elasticity and strength. Air characteristics including pressure and speed are critical factors of the rotor spun composite yarn spinning process. In this paper, air flow characteristics in a rotor composite yarn spinning unit are simulated and analysed by Ansys, and then verified by experiments. The results show that with the same spinning conditions, static pressure within the filament guide tube is lowest: -9 kPa and in rotor around -5 kPa. The speed of the airstream accelerates from the transfer channel inlet to the outlet, and reaches the largest value of 386 m/s at the outlet. As the rotor speed increases, the airflow velocity increases; the static pressure decreases; the breaking strength and CV of the composite yarn increase, and the breaking elongation and hairiness decrease according to the experiment results.


2017 ◽  
Vol 23 (3) ◽  
pp. 311-320 ◽  
Author(s):  
R.A.F. Oliveira ◽  
G.H. Justi ◽  
G.C. Lopes

In a cyclone design, pressure drop and collection efficiency are two important performance parameters to estimate its implementation viability. The optimum design provides higher efficiencies and lower pressure drops. In this paper, a grid independence study was performed to determine the most appropriate mesh to simulate the two-phase flow in a Stairmand cyclone. Computational fluid dynamic (CFD) tools were used to simulate the flow in an Eulerian-Lagrangian approach. Two different mesh structure, one with wall-refinement and the other with regular elements, and several mesh sizes were tested. The grid convergence index (GCI) method was applied to evaluate the result independence. The CFD model results were compared with empirical correlations from bibliography, showing good agreement. The wall-refined mesh with 287 thousand elements obtained errors of 9.8% for collection efficiency and 14.2% for pressure drop, while the same mesh, with regular elements, obtained errors of 8.7% for collection efficiency and 0.01% for pressure drop.


Sign in / Sign up

Export Citation Format

Share Document