scholarly journals Varietal Aromas of Fortified Wines from Different Moscato Var. (Vitis vinifera L.) under the Same Pedoclimatic Conditions

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2549
Author(s):  
Antonella Verzera ◽  
Maria Merlino ◽  
Fabrizio Cincotta ◽  
Ottavia Prestia ◽  
Antonio Sparacio ◽  
...  

Vitis vinifera L. cv. Moscato includes different varieties mainly used to produce sweet wines, such as fortified wines. Moscato grapes are characterized by a large number of free and glycosylated monoterpenoids giving very aromatic wines. However, the literature data on the aroma profile of fortified Moscato wines are very limited. In light of this, the present research aimed to investigate the aroma compounds, mainly the varietal ones, of fortified wines from different Moscato varieties, namely Giallo (Yellow), Bianco (White), Bianco at Petit Grain (Blanc à Petits Grains), Ottonel and Rosa (Pink of Trentino), cultivated under the same pedoclimatic conditions. Using the HS-SPME-GC-MS (head space-solid phase micro extraction-gas chromatography-mass spectrometry) technique, numerous varietal and fermentative aroma compounds have been identified and quantified and significant differences were observed among varieties in the levels of mostly volatiles and in their ratios. Based on their composition, the studied wines can be divided in two groups depending on whether linalool or geraniol prevails among varietal aromas. These results are evidence that each Moscato variety has a typical varietal aroma composition, even if some similarities were found between the two white varieties, and between Moscato Giallo and Moscato Ottonel varieties. Moscato Rosa showed a peculiar aroma composition and the lowest ester/terpene ratio.

2015 ◽  
Vol 148 (2) ◽  
pp. 171-186 ◽  
Author(s):  
Rojalin Pattanayak ◽  
Geetanjali Mishra ◽  
Chandan Singh Chanotiya ◽  
Prasant Kumar Rout ◽  
Chandra Sekhar Mohanty ◽  
...  

AbstractThe emitted aliphatic hydrocarbon profile of four Indian Coccinellidae (Coleoptera), Coccinella septempunctata (Linnaeus) (C7), Coccinella transversalis Fabricius (Ct), Menochilus sexmaculatus (Fabricius) (Ms), and Propylea dissecta (Mulsant) (Pd) has been investigated by simple solvent-less headspace solid-phase microextraction (HS-SPME) technique coupled with gas chromatography and mass spectroscopy (GC-MS). Identified volatile and non-volatile compounds were confirmed by running corresponding standards and comparing with the National Institute of Standards and Technology library. Among the 56 identified aliphatic hydrocarbons, saturated aliphatic hydrocarbons were more in number than unsaturated ones. Among saturated hydrocarbons, methyl branched hydrocarbons were more in number in C7 and Ct than Ms and Pd. Menochilus sexmaculatus and Pd had higher percentages of unsaturated hydrocarbons than C7 and Ct. Among branched chain-hydrocarbons, mono-methylated saturated hydrocarbons were more in number than dimethylated saturated hydrocarbons. Further analysis of the semiochemical profile revealed a closeness between C7 and Ct, and between Ms and Pd. Quantitative analysis revealed that straight chain hydrocarbons form separate clusters to branched chain methylated hydrocarbons. This is the first attempt to identify the semiochemical profile of some Indian coccinellids using the headspace solid phase micro-extraction technique coupled with the gas chromatography-mass spectrometry technique. This report will be helpful for various chemotaxonomic studies of the species in the future.


2021 ◽  
Vol 247 (5) ◽  
pp. 1117-1124
Author(s):  
Philipp P. Könen ◽  
Ines Stötzel ◽  
Wilfried Schwab ◽  
Matthias Wüst

AbstractIn grape berries (Vitis vinifera L.), sesquiterpenes are mainly accumulated as hydrocarbons in the epicuticular wax layer of grapes, whereas monoterpenes, which are predominantly present as alcohols, are glycosylated and are stored as glycosides in the vacuoles of grape berry cells. In this study, extensive analysis of grape berry hydrolysates by means of comprehensive two-dimensional gas chromatography–time-of-flight–mass spectrometry demonstrated that glycosylated sesquiterpene alcohols show very little structural diversity when compared to the sesquiterpene hydrocarbon fraction in the cuticle and are glycosylated to a rather low extent when compared to monoterpenols. Twenty-four enzymatically released terpenols were found in hydrolysates of the aromatic white wine variety Gewürztraminer (V. vinifera subsp. vinifera) after previous solid-phase extraction and headspace solid-phase microextraction. The detection of only three sesquiterpene alcohols, namely farnesol, nerolidol and drimenol, shows that most sesquiterpene hydrocarbons do not have a related hydroxylated structure in grapes. Nevertheless, the presence of the acyclic aglycone farnesol and nerolidol may be of importance for the wine aroma, since these structural isomers can be converted into numerous sesquiterpenes by nonenzymatic acid-catalyzed reactions during wine production. Grape-derived glycosidically bound sesquiterpene alcohols, therefore, represent, in addition to free sesquiterpene hydrocarbons, another pool of compounds that may influence the aroma profile of wines.


2019 ◽  
Vol 13 ◽  
pp. 03008
Author(s):  
Sabrina Voce ◽  
Giulia Pizzamiglio ◽  
Davide Mosetti ◽  
Giovanni Bigot ◽  
Andrea Lonardi ◽  
...  

Leaf removal is a viticultural practice applied in order to improve fruit-zone microclimate and berry quality. The aim of this trial was to evaluate the effect of post-flowering leaf removal on maturation and biosynthesis of terpenes and and C13-norisoprenoids in Ribolla Gialla grapes. In the seasons 2015 and 2016, basic maturation parameters were nearly unaffected by leaf removal. Contrarily, in the second season, 2016, one week before harvest, the concentration of several aroma compounds was significantly improved by leaf removal. In conclusion, the trial here showed that leaf removal improves the concentration of aroma compounds in the grapes, but the selection of the date of harvest is more crucial in order to maintain them during vinification.


Sign in / Sign up

Export Citation Format

Share Document