scholarly journals Real-Time PCR Assay for the Detection and Quantification of Roe Deer to Detect Food Adulteration—Interlaboratory Validation Involving Laboratories in Austria, Germany, and Switzerland

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2645
Author(s):  
Barbara Druml ◽  
Steffen Uhlig ◽  
Kirsten Simon ◽  
Kirstin Frost ◽  
Karina Hettwer ◽  
...  

Game meat products are particularly prone to be adulterated by replacing game meat with cheaper meat species. Recently, we have presented a real-time polymerase chain reaction (PCR) assay for the identification and quantification of roe deer in food. Quantification of the roe deer content in % (w/w) was achieved relatively by subjecting the DNA isolates to a reference real-time PCR assay in addition to the real-time PCR assay for roe deer. Aiming at harmonizing analytical methods for food authentication across EU Member States, the real-time PCR assay for roe deer has been tested in an interlaboratory ring trial including 14 laboratories from Austria, Germany, and Switzerland. Participating laboratories obtained aliquots of DNA isolates from a meat mixture containing 24.8% (w/w) roe deer in pork, roe deer meat, and 12 meat samples whose roe deer content was not disclosed. Performance characteristics included amplification efficiency, level of detection (LOD95%), repeatability, reproducibility, and accuracy of quantitative results. With a relative reproducibility standard deviation ranging from 13.35 to 25.08% (after outlier removal) and recoveries ranging from 84.4 to 114.3%, the real-time PCR assay was found to be applicable for the detection and quantification of roe deer in raw meat samples to detect food adulteration.

2005 ◽  
Vol 51 (5) ◽  
pp. 393-398 ◽  
Author(s):  
Sunny Jiang ◽  
Hojabr Dezfulian ◽  
Weiping Chu

Adenoviruses 40 and 41 have been recognized as important etiological agents of gastroenteritis in children. A real-time PCR method (TaqMan® assay) was developed for rapid quantification of adenovirus 40 (Ad40) by amplifying an 88 bp sequence from the hexon gene. To establish a quantification standard curve, a 1090 bp hexon region of Ad40 was amplified and cloned into the pGEM®-T Vector. A direct correlation was observed between the fluorescence threshold cycle number (Ct) and the starting quantity of Ad40 hexon gene. The quantification was linear over 6-log units and the amplification efficiency averaged greater than 95%. Seeding studies using various environmental matrices (including sterile water, creek water, brackish estuarine water, ocean water, and secondary sewage effluent) suggest that this method is applicable to environmental samples. However, real-time PCR was sensitive to inhibitors present in the environmental samples. Lower efficiency of PCR amplification was found in secondary sewage effluent and creek waters. Application of the method to fecal contaminated waters successfully quantified the presence of Ad40. The sensitivity of the real-time PCR is comparable to the traditional nested PCR assay for environmental samples. In addition, the real-time PCR assay offers the advantage of speed and insensitivity to contamination during PCR set up. The real-time PCR assay developed in this study is suitable for quantitative determination of Ad40 in environmental samples and represents a considerable advancement in pathogen quantification in aquatic environments.Key words: adenovirus, real-time PCR, environmental waters, serotype 40.


2012 ◽  
Vol 75 (4) ◽  
pp. 743-747 ◽  
Author(s):  
BWALYA LUNGU ◽  
W. DOUGLAS WALTMAN ◽  
ROY D. BERGHAUS ◽  
CHARLES L. HOFACRE

Conventional culture methods have traditionally been considered the “gold standard” for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis–specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis–specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.


2017 ◽  
Vol 7 (1) ◽  
pp. 32 ◽  
Author(s):  
Dimitra Houhoula ◽  
Stamatios Koussissis ◽  
Vladimiros Lougovois ◽  
John Tsaknis ◽  
Dimitra Kassavita ◽  
...  

The aim of the present study was the implementation of molecular techniques in the detection and quantification of allergic substances of peanut in various kinds of food products, e.g., breakfast cereals, chocolates and biscuits that are frequently related to allergies. In some cases, the presence of peanuts can be due to contamination during production and are not declared on the label. A total of 152 samples were collected from supermarkets and were analysed by a Real Time PCR method. The results indicated that 125 samples (83,3%) were found positive in peanut traces but the most important finding is that from the 84 samples that had no allergen declaration for peanuts, 48 (57,1%) of them were found positive. In conclusion, Real Time PCR can be a very important tool for the rapid detection and quantification of food allergens.


2007 ◽  
Vol 70 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
V. M. BOHAYCHUK ◽  
G. E. GENSLER ◽  
M. E. McFALL ◽  
R. K. KING ◽  
D. G. RENTER

Conventional culture methods have traditionally been considered the “gold standards” for the isolation and identification of foodborne pathogens. However, culture methods are labor-intensive and time-consuming. We have developed a real-time PCR assay for the detection of Salmonella in a variety of food and food-animal matrices. The real-time PCR assay incorporates both primers and hybridization probes based on the sequence of the Salmonella invA gene and uses fluorescent resonance energy transfer technology to ensure highly sensitive and specific results. This method correctly classified 51 laboratory isolates of Salmonella and 28 non-Salmonella strains. The method was also validated with a large number of field samples that consisted of porcine feces and cecal contents, pork carcasses, bovine feces and beef carcasses, poultry cecal contents and carcasses, equine feces, animal feeds, and various food products. The samples (3,388) were preenriched in buffered peptone water and then selectively enriched in tetrathionate and Rappaport-Vassiliadis broths. Aliquots of the selective enrichment broths were combined for DNA extraction and analysis by the real-time PCR assay. When compared with the culture method, the diagnostic sensitivity of the PCR assay for the various matrices ranged from 97.1 to 100.0%, and the diagnostic specificity ranged from 91.3 to 100.0%. Kappa values ranged from 0.87 to 1.00, indicating excellent agreement of the real-time PCR assay to the culture method. The reduction in time and labor makes this highly sensitive and specific real-time PCR assay an excellent alternative to conventional culture methods for surveillance and research studies to improve food safety.


2018 ◽  
Vol 22 (5) ◽  
pp. 418-423
Author(s):  
Elisabete Andrade ◽  
Daniele Rocha ◽  
Marcela Fontana-Maurell ◽  
Elaine Costa ◽  
Marisa Ribeiro ◽  
...  

2016 ◽  
Vol 17 (1) ◽  
pp. 1-5 ◽  
Author(s):  
S. J. Anderson ◽  
H. E. Simmons ◽  
R. D. French-Monar ◽  
G. P. Munkvold

A real-time PCR assay was used to compare seedling infection by Sphacelotheca reiliana, the causal agent of head smut, among five inbred genotypes representing low, moderate, and high susceptibility to the disease. Seeds were coated with teliospores and planted in autoclaved field soil in a growth chamber. Incidence of seedling infection at growth stage V3 differed between an inbred genotype of low susceptibility and those of moderate and high susceptibility, but did not differ between the high and moderately susceptible groups (P < 0.05). The real-time PCR assay was also used to compare infection status at early and late vegetative stages with observable symptoms in the field. We detected infection via real-time PCR in maize at both growth stages during field trials conducted in Texas and California but observed no disease symptoms (smutted ears or tassels). Notably, the fungus was present in up to 31% of the ear shoots in plots without disease symptoms. The real-time assay can be a useful tool for screening seedling-stage host resistance, and for better understanding the progress of infection in different maize genotypes. The field data suggest that asymptomatic infection is much more common than previously thought, and may have important implications for the epidemiology of this fungus under diverse plant resistance and growing conditions. Accepted for publication 11 December 2015. Published 5 January 2016.


Sign in / Sign up

Export Citation Format

Share Document