scholarly journals Use of Artificial Neural Network Model for Rice Quality Prediction Based on Grain Physical Parameters

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3016
Author(s):  
Pedro Sousa Sampaio ◽  
Ana Sofia Almeida ◽  
Carla Moita Brites

The main goal of this study was to test the ability of an artificial neural network (ANN) for rice quality prediction based on grain physical parameters and to conduct a comparison with multiple linear regression (MLR) using 66 samples in duplicate. The parameters used for rice quality prediction are related to biochemical composition (starch, amylose, ash, fat, and protein concentration) and pasting parameters (peak viscosity, trough, breakdown, final viscosity, and setback). These parameters were estimated based on grain appearance (length, width, length/width ratio, total whiteness, vitreous whiteness, and chalkiness), and milling yield (husked, milled, head) data. The MLR models were characterized by very low coefficient determination (R2 = 0.27–0.96) and a root-mean-square error (RMSE) (0.08–0.56). Meanwhile, the ANN models presented a range for R2 = 0.97–0.99, being characterized for R2 = 0.98 (training), R2 = 0.88 (validation), and R2 = 0.90 (testing). According to these results, the ANN algorithms could be used to obtain robust models to predict both biochemical and pasting profiles parameters in a fast and accurate form, which makes them suitable for application to simultaneous qualitative and quantitative analysis of rice quality. Moreover, the ANN prediction method represents a promising approach to estimate several targeted biochemical and viscosity parameters with a fast and clean approach that is interesting to industry and consumers, leading to better assessment of rice classification for authenticity purposes.

2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document