scholarly journals Natural Red Pigment Production by Monascus Purpureus in Submerged Fermentation Systems Using a Food Industry Waste: Brewer’s Spent Grain

Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 161 ◽  
Author(s):  
Selim Silbir ◽  
Yekta Goksungur

This paper studies the production of natural red pigments by Monascus purpureus CMU001 in the submerged fermentation system using a brewery waste hydrolysate, brewer’s spent grain (BSG). The chemical, structural and elemental characterization of the BSG was performed with Van-Soest method, Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The lignocellulosic structure of BSG was hydrolyzed with a dilute sulfuric acid solution (2% (w/v)) followed by detoxification with Ca(OH)2. Maximum red pigment production (22.25 UA500) was achieved with the following conditions: 350 rpm shake speed, 50 mL fermentation volume, initial pH of 6.5, inoculation ratio of 2% (v/v), and monosodium glutamate (MSG) as the most effective nitrogen source. Plackett–Burman design was used to assess the significance of the fermentation medium components, and MSG and ZnSO4·7H2O were found to be the significant medium variables. This study is the first study showing the compatibility of BSG hydrolysate to red pigment production by Monascus purpureus in a submerged fermentation system.

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 75
Author(s):  
Dilara Mehri ◽  
N. Altinay Perendeci ◽  
Yekta Goksungur

Various biotechnological approaches have been employed to convert food waste into value-added bioproducts through fermentation processes. Whey, a major waste generated by dairy industries, is considered an important environmental pollutant due to its massive production and high organic content. The purpose of this study is to investigate the effect of different fermentation parameters in simultaneous hydrolysis and fermentation (SHF) of whey for pigment production with Monascus purpureus. The submerged culture fermentation parameters optimized were type and pretreatment of whey, pH, inoculation ratio, substrate concentration and monosodium glutamate (MSG) concentration. Demineralized (DM), deproteinized (DP), and raw whey (W) powders were used as a substrate for pigment production by simultaneous hydrolysis and fermentation (SHF). The maximum red pigment production was obtained as 38.4 UA510 nm (absorbance units) at the optimized condition of SHF. Optimal conditions of SHF were 2% (v/v) inoculation ratio, 75 g/L of lactose as carbon source, 25 g/L of MSG as nitrogen source, and fermentation medium pH of 7.0. The specific growth rate of M. purpureus on whey and the maximum pigment production yield values were 0.023 h−1 and 4.55 UAd−1, respectively. This study is the first in the literature to show that DM whey is a sustainable substrate in the fermentation process of the M. purpureus red pigment.


2021 ◽  
Author(s):  
Dilara Mehri ◽  
Altınay Perendeci ◽  
Yekta Goksungur

Abstract Various biotechnological approaches have been employed to convert food waste into the value-added bioproducts through fermentation processes. Whey, a major waste generated by dairy industries, is considered an important environmental pollutant due to its massive production and high organic content. The purpose of this study is to produce red color pigment from whey by using Monascus purpureus. The submerged culture fermentation parameters have been optimized to produce the red Monascus pigment. Demineralized (DM), deproteinized (DP), and raw whey (W) powders were used as a substrate for pigment production by simultaneous hydrolysis and fermentation (SHF). The maximum red pigment production was obtained as 38.4 UA510nm at the optimized condition of SHF. Optimum conditions of SHF were 2 % (v/v) inoculation ratio, 75 g/l of lactose as C source, 25 g/l of MSG as N source, and fermentation medium pH of 7.0. The specific growth rate of Monascus purpureus on whey and the maximum pigment production yield values were 0.023 h-1 and 4.55 UAd-1, respectively. This study is the first in the literature to show that DM whey is a sustainable substrate in the fermentation process of the Monascus purpureus red pigment.


Nutrafoods ◽  
2015 ◽  
Vol 14 (3) ◽  
pp. 159-167 ◽  
Author(s):  
Prateek Srivastav ◽  
Vivek Kumar Yadav ◽  
Sharmila Govindasamy ◽  
Muthukumaran Chandrasekaran

2011 ◽  
Vol 28 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Maryam Hashemi ◽  
Seyed Hadi Razavi ◽  
Seyed Abbas Shojaosadati ◽  
Seyyed Mohammad Mousavi

2012 ◽  
Vol 17 (1) ◽  
pp. 296-301
Author(s):  
Xiaolong Li ◽  
Fengqin Zhang ◽  
Taotao Li ◽  
Zhuoxuan Lu ◽  
Liming Zhang ◽  
...  

2009 ◽  
Vol 5 (1) ◽  
pp. 80-91 ◽  
Author(s):  
Mohd Shamzi Mohamed ◽  
Rosfarizan Mohamad ◽  
Musaalbakri Abdul Manan ◽  
Arbakariya B. Ariff

2020 ◽  
Vol 10 (24) ◽  
pp. 8867
Author(s):  
Osama M. Darwesh ◽  
Ibrahim A. Matter ◽  
Hesham S. Almoallim ◽  
Sulaiman A. Alharbi ◽  
You-Kwan Oh

The color of food is a critical factor influencing its general acceptance. Owing to the effects of chemical colorants on health, current research is directly aimed at producing natural and healthy food colorants from microbial sources. A pigment-producing fungal isolate, obtained from soil samples and selected based on its rapidity and efficiency in producing red pigments, was identified as Monascus ruber OMNRC45. The culture conditions were optimized to enhance pigment production under submerged fermentation. The optimal temperature and pH for the highest red pigment yield were 30 °C and 6.5, respectively. The optimum carbon and nitrogen sources were rice and peptone, respectively. The usefulness of the pigment produced as a food colorant was evaluated by testing for contamination by the harmful mycotoxin citrinin and assessing its biosafety in mice. In addition, sensory evaluation tests were performed to evaluate the overall acceptance of the pigment as a food colorant. The results showed that M. ruber OMNRC45 was able to rapidly and effectively produce dense natural red pigment under the conditions of submerged fermentation without citrinin production. The findings of the sensory and biosafety assessments indicated the biosafety and applicability of the red Monascus pigment as a food colorant.


Sign in / Sign up

Export Citation Format

Share Document