scholarly journals A Numerical Study of Nonlinear Fractional Order Partial Integro-Differential Equation with a Weakly Singular Kernel

2021 ◽  
Vol 5 (3) ◽  
pp. 85
Author(s):  
Tayyaba Akram ◽  
Zeeshan Ali ◽  
Faranak Rabiei ◽  
Kamal Shah ◽  
Poom Kumam

Fractional differential equations can present the physical pathways with the storage and inherited properties due to the memory factor of fractional order. The purpose of this work is to interpret the collocation approach for tackling the fractional partial integro-differential equation (FPIDE) by employing the extended cubic B-spline (ECBS). To determine the time approximation, we utilize the Caputo approach. The stability and convergence analysis have also been analyzed. The efficiency and reliability of the suggested technique are demonstrated by two numerical applications, which support the theoretical results and the effectiveness of the implemented algorithm.

Author(s):  
B Sagar ◽  
S. Saha Ray

In this paper, a novel meshless numerical scheme to solve the time-fractional Oskolkov–Benjamin–Bona–Mahony–Burgers-type equation has been proposed. The proposed numerical scheme is based on finite difference and Kansa-radial basis function collocation approach. First, the finite difference scheme has been employed to discretize the time-fractional derivative and subsequently, the Kansa method is utilized to discretize the spatial derivatives. The stability and convergence analysis of the time-discretized numerical scheme are also elucidated in this paper. Moreover, the Kudryashov method has been utilized to acquire the soliton solutions for comparison with the numerical results. Finally, numerical simulations are performed to confirm the applicability and accuracy of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document