kansa method
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
B Sagar ◽  
S. Saha Ray

In this paper, a novel meshless numerical scheme to solve the time-fractional Oskolkov–Benjamin–Bona–Mahony–Burgers-type equation has been proposed. The proposed numerical scheme is based on finite difference and Kansa-radial basis function collocation approach. First, the finite difference scheme has been employed to discretize the time-fractional derivative and subsequently, the Kansa method is utilized to discretize the spatial derivatives. The stability and convergence analysis of the time-discretized numerical scheme are also elucidated in this paper. Moreover, the Kudryashov method has been utilized to acquire the soliton solutions for comparison with the numerical results. Finally, numerical simulations are performed to confirm the applicability and accuracy of the proposed scheme.


Author(s):  
Santanu Saha Ray ◽  
B Sagar

Abstract In this paper, the time-fractional modied (2+1)-dimensional Konopelchenko-Dubrovsky equations have been solved numerically using the Kansa method, in which the multiquadrics used as radial basis function. To achieve this, a numerical scheme based on nite dierenceand Kansa method has been proposed. Also the solitary wave solutions have been obtained by using Kudryashov technique. The computed results are compared with the exact solutions as well as with the soliton solutions obtained by Kudryashov technique to show the accuracy of the proposed method.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4178
Author(s):  
Olaf Popczyk ◽  
Grzegorz Dziatkiewicz

New engineering materials exhibit a complex internal structure that determines their properties. For thermal metamaterials, it is essential to shape their thermophysical parameters’ spatial variability to ensure unique properties of heat flux control. Modeling heterogeneous materials such as thermal metamaterials is a current research problem, and meshless methods are currently quite popular for simulation. The main problem when using new modeling methods is the selection of their optimal parameters. The Kansa method is currently a well-established method of solving problems described by partial differential equations. However, one unsolved problem associated with this method that hinders its popularization is choosing the optimal shape parameter value of the radial basis functions. The algorithm proposed by Fasshauer and Zhang is, as of today, one of the most popular and the best-established algorithms for finding a good shape parameter value for the Kansa method. However, it turns out that it is not suitable for all classes of computational problems, e.g., for modeling the 1D heat conduction in non-homogeneous materials, as in the present paper. The work proposes two new algorithms for finding a good shape parameter value, one based on the analysis of the condition number of the matrix obtained by performing specific operations on interpolation matrix and the other being a modification of the Fasshauer algorithm. According to the error measures used in work, the proposed algorithms for the considered class of problem provide shape parameter values that lead to better results than the classic Fasshauer algorithm.


2021 ◽  
Vol 35 (06) ◽  
pp. 2150090
Author(s):  
B Sagar ◽  
S. Saha Ray

In this paper, time-fractional (2 + 1)-dimensional Nizhnik–Novikov–Veselov equations have been solved numerically utilizing the Kansa method, in which the multiquadrics are taken as radial basis function. To attain this, a numerical scheme based on finite difference and Kansa method has been proposed. In addition, the soliton solutions have been obtained by employing Kudryashov method and tanh method for comparison purpose with the obtained numerical solutions. The numerical examples are given to demonstrate the accuracy and applicability of the proposed method.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1419 ◽  
Author(s):  
Cheng-Yu Ku ◽  
Jing-En Xiao

In this article, a collocation method using radial polynomials (RPs) based on the multiquadric (MQ) radial basis function (RBF) for solving partial differential equations (PDEs) is proposed. The new global RPs include only even order radial terms formulated from the binomial series using the Taylor series expansion of the MQ RBF. Similar to the MQ RBF, the RPs is infinitely smooth and differentiable. The proposed RPs may be regarded as the equivalent expression of the MQ RBF in series form in which no any extra shape parameter is required. Accordingly, the challenging task for finding the optimal shape parameter in the Kansa method is avoided. Several numerical implementations, including problems in two and three dimensions, are conducted to demonstrate the accuracy and robustness of the proposed method. The results depict that the method may find solutions with high accuracy, while the radial polynomial terms is greater than 6. Finally, our method may obtain more accurate results than the Kansa method.


2019 ◽  
Author(s):  
Artur Krowiak ◽  
Renata Filipowska

Sign in / Sign up

Export Citation Format

Share Document