scholarly journals Dust-Acoustic Rogue Waves in an Electron-Positron-Ion-Dust Plasma Medium

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 31
Author(s):  
Md. Habibur Rahman ◽  
Nure Alam Chowdhury ◽  
Abdul Mannan ◽  
A. A. Mamun

In this work, the modulational instability of dust-acoustic (DA) waves (DAWs) is theoretically studied in a four-component plasma medium with electrons, positrons, ions, and negative dust grains. The nonlinear and dispersive coefficients of the nonlinear Schrödinger equation (NLSE) are used to recognize the stable and unstable parametric regimes of the DAWs. It can be seen from the numerical analysis that the amplitude of the DA rogue waves decreases with increasing populations of positrons and ions. It is also observed that the direction of the variation of the critical wave number is independent (dependent) of the sign (magnitude) of q. The applications of the outcomes from the present investigation are briefly addressed.

2015 ◽  
Vol 81 (3) ◽  
Author(s):  
Shalini ◽  
N. S. Saini

The properties of dust ion acoustic rogue waves (DIARWs) in an unmagnetized collisionless plasma system composed of charged dust grains, superthermal electrons and warm ions as a fluid are studied. The multiple scale perturbation method is used to derive a nonlinear Schrödinger equation (NLSE) for DIARWs. From the coefficients of nonlinearity and dispersion, we have determined the critical wave number threshold kcr at which modulational instability sets in. This critical wave number depends on the various plasma parameters, viz. superthermality of electrons, ion temperature and dust concentration. Within the modulational instability region, a random perturbation of amplitude grows and thus, creates DIARWs. It is found that DIARWs are significantly affected by electron superthermality (via κ), ion temperature (via σ) and dust concentration (via f). In view of the crucial importance of DIARWs in space environments, our results may be useful in understanding the basic features of DIARWs that may occur in space plasmas.


2013 ◽  
Vol 79 (6) ◽  
pp. 1089-1094 ◽  
Author(s):  
IOANNIS KOURAKIS ◽  
MICHAEL MC KERR ◽  
ATA UR-RAHMAN

AbstractA fluid model is used to describe the propagation of envelope structures in an ion plasma under the influence of the action of weakly relativistic electrons and positrons. A multiscale perturbative method is used to derive a nonlinear Schrödinger equation for the envelope amplitude. Criteria for modulational instability, which occurs for small values of the carrier wavenumber (long carrier wavelengths), are derived. The occurrence of rogue waves is briefly discussed.


Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 230-238
Author(s):  
Jebun Naher Sikta ◽  
Nure Alam Chowdhury ◽  
Abdul Mannan ◽  
Sharmin Sultana ◽  
A. A. Mamun

The formation of gigantic dust-acoustic (DA) rouge waves (DARWs) in an electron depleted unmagnetized opposite polarity dusty plasma system is theoretically predicted. The nonlinear Schrödinger equation (NLSE) is derived by employing the reductive perturbation method. It is found that the NLSE leads to the modulational instability (MI) of DA waves (DAWs), and to the formation of DARWs, which are caused by to the effects of nonlinearity and dispersion in the propagation of DAWs. The conditions for the MI of DAWs and the basic properties of the generated DARWs are numerically identified. It is also seen that the striking features (viz., instability criteria, amplitude and width of DARWs, etc.) of the DAWs are significantly modified by the effects of super-thermality of ions, number density, mass and charge state of the plasma species, etc. The results obtained from the present investigation will be useful in understanding the MI criteria of DAWs and associated DARWs in electron depleted unmagnetized opposite polarity dusty plasma systems like Earth’s mesosphere (where the D-region plasma could suffer from electron density depletion), cometary tails, Jupiter’s magnetosphere, and F-ring of Saturn, etc.


2014 ◽  
Vol 81 (2) ◽  
Author(s):  
E. K. El-Shewy ◽  
S. A. Elwakil ◽  
A. M. El-Hanbaly ◽  
A. I. Kassem

The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.


2007 ◽  
Vol 7 (1) ◽  
pp. 123-128 ◽  
Author(s):  
J. Touboul

Abstract. This work studies the impact of wind on extreme wave events, by means of numerical analysis. A High Order Spectral Method (HOSM) is used to generate freak, or rogue waves, on the basis of modulational instability. Wave fields considered here are chosen to be unstable to two kinds of perturbations. The evolution of components during the propagation of the wave fields is presented. Their evolution under the action of wind, modeled through Jeffreys' sheltering mechanism, is investigated and compared to the results without wind. It is found that wind sustains rogue waves. The perturbation most influenced by wind is not necessarily the most unstable.


Sign in / Sign up

Export Citation Format

Share Document