scholarly journals Constraints on Lorentz Invariance Violation with Multiwavelength Polarized Astrophysical Sources

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 44
Author(s):  
Qi-Qi Zhou ◽  
Shuang-Xi Yi ◽  
Jun-Jie Wei ◽  
Xue-Feng Wu

Possible violations of Lorentz invariance (LIV) can produce vacuum birefringence, which results in a frequency-dependent rotation of the polarization plane of linearly polarized light from distant sources. In this paper, we try to search for a frequency-dependent change of the linear polarization angle arising from vacuum birefringence in the spectropolarimetric data of astrophysical sources. We collect five blazars with multiwavelength polarization measurements in different optical bands (UBVRI). Taking into account the observed polarization angle contributions from both the intrinsic polarization angle and the rotation angle induced by LIV, and assuming that the intrinsic polarization angle is an unknown constant, we obtain new constraints on LIV by directly fitting the multiwavelength polarimetric data of the five blazars. Here, we show that the birefringence parameter η quantifying the broken degree of Lorentz invariance is limited to be in the range of −9.63×10−8<η<6.55×10−6 at the 2σ confidence level, which is as good as or represents one order of magnitude improvement over the results previously obtained from ultraviolet/optical polarization observations. Much stronger limits can be obtained by future multiwavelength observations in the gamma-ray energy band.

2005 ◽  
Vol 14 (03) ◽  
pp. 375-382 ◽  
Author(s):  
CHIH-LANG LIN ◽  
IRÈNE WANG ◽  
MARC PIERRE ◽  
ISABELLE COLOMBIER ◽  
CHANTAL ANDRAUD ◽  
...  

We study the rotational motion of objects trapped in a focused laser beam (optical tweezers). Micrometer-sized flat slabs are fabricated using two-photon photopolymerization. These objects, trapped by linearly-polarized light, tend to align parallel to the polarization plane. This alignment effect is attributed to the polarization anisotropy resulting from the object shape and we present a simple electromagnetic approach to estimate the resulting optical torque. Micro-rotors of different sizes are studied experimentally. We characterize the behavior of micro-objects when the light polarization is rotated at constant speed. Our theoretical approach gives a good prediction of how the size of micro-objects affects their rotation efficiency.


2019 ◽  
Vol 99 (4) ◽  
Author(s):  
Rodrigo Guedes Lang ◽  
Humberto Martínez-Huerta ◽  
Vitor de Souza

2006 ◽  
Vol 643 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Tina Kahniashvili ◽  
Grigol Gogoberidze ◽  
Bharat Ratra

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 596 ◽  
Author(s):  
Fabian Kislat

Theories of quantum gravity suggest that Lorentz invariance, the fundamental symmetry of the Theory of Relativity, may be broken at the Planck energy scale. While any deviation from conventional Physics must be minuscule in particular at attainable energies, this hypothesis motivates ever more sensitive tests of Lorentz symmetry. In the photon sector, astrophysical observations, in particular polarization measurements, are a very powerful tool because tiny deviations from Lorentz invariance will accumulate as photons propagate over cosmological distances. The Standard-Model Extension (SME) provides a theoretical framework in the form of an effective field theory that describes low-energy effects due to a more fundamental quantum gravity theory by adding additional terms to the Standard Model Lagrangian. These terms can be ordered by the mass dimension d of the corresponding operator and lead to a wavelength, polarization, and direction dependent phase velocity of light. Lorentz invariance violation leads to an energy-dependent change of the Stokes vector as photons propagate, which manifests itself as a rotation of the polarization angle in measurements of linear polarization. In this paper, we analyze optical polarization measurements from 63 Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRBs) to search for Lorentz violating signals. We use both spectropolarimetric measurements, which directly constrain the change of linear polarization angle, as well as broadband spectrally integrated measurements. In the latter, Lorentz invariance violation manifests itself by reducing the observed net polarization fraction. Any observation of non-vanishing linear polarization thus leads to constraints on the magnitude of Lorentz violating effects. We derive the first set limits on each of the 10 individual birefringent coefficients of the minimal SME with d = 4 , with 95% confidence limits on the order of 10−34 on the dimensionless coefficients.


2019 ◽  
Vol 15 (S356) ◽  
pp. 364-364
Author(s):  
Hassan Abdalla

AbstractAt energies approaching the Planck energy scale 1019GeV, several quantum-gravity theories predict that familiar concepts such as Lorentz (LIV) symmetry can be broken. Such extreme energies are currently unreachable by experiments on Earth, but for photons traveling over cosmological distances the accumulated deviations from the Lorentz symmetry may be measurable using the Cherenkov Telescope Array (CTA). To study the spectral hardening feature observed in some VHE gamma-ray blazars, we calculate the reduction of the EBL gamma-gamma opacity due to the existence of underdense regions along the line of sight to VHE -gamma ray sources and we compared with the possibility of a LIV signature. Considering the LIV effect, we found that the cosmic opacity for VHE-gamma rays with energy more than 10 TeV can be strongly reduced. I will further discuss the impact of LIV on the Compton scattering process, and how future CTA observations may open an exciting window on studies of the fundamental physics.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Tao Zhang ◽  
Fu-Wen Shu ◽  
Qing-Wen Tang ◽  
Dong-Hui Du

AbstractIn this work we focus on a toy model: ($$3+1$$ 3 + 1 )-dimensional Hořava–Lifshitz gravity coupling with an anisotropic electromagnetic (EM) field which is generated through a Kaluza-Klein reduction of a ($$4+1$$ 4 + 1 )-dimensional Hořava–Lifshitz gravity. This model exhibits a remarkable feature that it has the same velocity for both gravitational and electromagnetic waves. This feature makes it possible to restrict the parameters of the theory from GRB 170817A. In this work we use this feature to discuss possible constraints on the parameter $$\beta $$ β in the theory, by analyzing the possible Lorentz invariance violation effect of the GRB 170817A. This is achieved by analyzing potential time delay of gamma-ray photons in this event. It turns out that it places a stringent constraint on this parameter. In the most ideal case, it gives $$|1-\sqrt{\beta }|<(10^{-19}-10^{-18})$$ | 1 - β | < ( 10 - 19 - 10 - 18 ) .


2012 ◽  
Vol 21 (08) ◽  
pp. 1250070 ◽  
Author(s):  
ORLANDO LUONGO ◽  
DAMIANO TOMMASINI

We consider the neutrino fluxes and photon lensing from Gamma Ray Bursts and galaxy shocks, in order to predict measurable quantum corrections at late times. In particular, changes of the Einstein shell condition are expected to modify the time delay of neutrinos and photons at the Planck scale. Hence, we study the consequences of the Lorentz invariance violation through the use of such photons and neutrinos. The Lorentz invariance violation is expected to depend on the cosmological model, considered a priori in the Einstein equations; therefore, we focus on the so-called Hořava model which has recently attracted great interest. In addition, we compare our results with the ΛCDM and modified Chaplygin gas models, respectively. We infer several theoretical constraints which could reveal such quantum gravity effects.


Sign in / Sign up

Export Citation Format

Share Document