scholarly journals The SVOM Mission

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 113
Author(s):  
Maria Grazia Bernardini ◽  
Bertrand Cordier ◽  
Jianyan Wei

SVOM (Space-based multiband astronomical Variable Objects Monitor) is a sino-french mission that is dedicated to Gamma-Ray Burst (GRB) science, expected to be launched in mid 2023. The mission includes four space-based and three ground-based instruments that, working together, will discover GRBs and provide rapid multi-wavelength follow-up in order to obtain a complete coverage of the GRB emission over seven decades in energy, from the trigger up to the very late phases of the afterglow. Thanks to its characteristics, SVOM will play a crucial role in time-domain and multi-messenger astronomy.

Author(s):  
J. M. Castro Cerón ◽  
A. J. Castro-Tirado ◽  
R. Hudec ◽  
J. Soldán ◽  
M. Bernas ◽  
...  
Keyword(s):  

1995 ◽  
Vol 452 (1) ◽  
Author(s):  
B. J. McNamara ◽  
T. E. Harrison ◽  
C. L. Williams
Keyword(s):  

Author(s):  
A. Poci ◽  
K. Kuehn ◽  
T. Abbott ◽  
F. B. Abdalla ◽  
S. Allam ◽  
...  

AbstractThe Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.


2008 ◽  
Author(s):  
S. Basa ◽  
M. Galassi ◽  
David Palmer ◽  
Ed Fenimore ◽  
Keyword(s):  

2012 ◽  
Vol 746 (2) ◽  
pp. 170 ◽  
Author(s):  
A. N. Morgan ◽  
James Long ◽  
Joseph W. Richards ◽  
Tamara Broderick ◽  
Nathaniel R. Butler ◽  
...  

Author(s):  
MICHEL BOËR

The prompt emission of gamma-ray burst sources is still the main means of detection, and a privilegied access to the souce dynamics. It is detected from radio to GeV energies, and its study is crucial for the overall understanding of the phenomenom. We present here a panorama of the rapid optical observations, and what can be infered from the data. We will discuss also the new instruments which are planned for the observation of the prompt and early afterglow at optical and infrared wavelengths, with spectral capabilities.


2014 ◽  
Vol 1 (1) ◽  
pp. 163-169
Author(s):  
Pieter J. Meintjes ◽  
Pheneas Nkundabakura ◽  
Brian Van Soelen ◽  
Alida Odendaal

Of the 271 sources in the 3rd EGRET catalogue, 131 were reported as unidentied, i.e. not associated with any particular class of point source in the sky. Since the largest fraction of the EGRET sources were extragalactic, a sample of 13 extragalactic unidentied sources have been selected for multi-wavelength follow-up studies. Five of the selected EGRET sources coincide with gamma-ray flux enhancements seen in the Fermi-LAT data after one year of operation. In this article, we report the multi-wavelength properties of, among others, the 5 sources detected by Fermi-LAT from our sample of high galactic latitude unidentied EGRET sources. Recent spectroscopic observations with the Southern African Large Telescope (SALT) conrmed one of the unidentied EGRET sources as a possible Seyfert 2 galaxy, or alternatively, a narrow line radio galaxy. The detected gamma-ray emission (E<sub>γ</sub> &gt; 30 MeV) of the 5 coinciding EGRET/Fermi-LAT sources are tted with external Compton and Synchrotron Self Compton (SSC) models to investigate the energetics required to produce the EGRET/Fermi gamma-ray flux. In all the models the inclination angle of the jet with respect to the observer is jet 60, between those of Seyfert 1 and Seyfert 2/radio galaxies. These results confirm the possibility of Seyfert and radio galaxies sources are constituting a new class of gamma-ray source in the energy range E<sub>γ</sub> &gt; 30 MeV.


2021 ◽  
Vol 923 (2) ◽  
pp. 258
Author(s):  
Charles D. Kilpatrick ◽  
David A. Coulter ◽  
Iair Arcavi ◽  
Thomas G. Brink ◽  
Georgios Dimitriadis ◽  
...  

Abstract We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg2 for the 90th percentile best localization), covering a total of 51 deg2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r-band decline rate of 0.68 mag day−1, similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8 mag (50% confidence). Our data are not constraining for “red” kilonovae and rule out “blue” kilonovae with M > 0.5 M ⊙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources.


Sign in / Sign up

Export Citation Format

Share Document