scholarly journals Genome-Wide Analyses and Prediction of Resistance to MLN in Large Tropical Maize Germplasm

Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Christine Nyaga ◽  
Manje Gowda ◽  
Yoseph Beyene ◽  
Wilson T. Muriithi ◽  
Dan Makumbi ◽  
...  

Maize lethal necrosis (MLN), caused by co-infection of maize chlorotic mottle virus and sugarcane mosaic virus, can lead up to 100% yield loss. Identification and validation of genomic regions can facilitate marker assisted breeding for resistance to MLN. Our objectives were to identify marker-trait associations using genome wide association study and assess the potential of genomic prediction for MLN resistance in a large panel of diverse maize lines. A set of 1400 diverse maize tropical inbred lines were evaluated for their response to MLN under artificial inoculation by measuring disease severity or incidence and area under disease progress curve (AUDPC). All lines were genotyped with genotyping by sequencing (GBS) SNPs. The phenotypic variation was significant for all traits and the heritability estimates were moderate to high. GWAS revealed 32 significantly associated SNPs for MLN resistance (at p < 1.0 × 10−6). For disease severity, these significantly associated SNPs individually explained 3–5% of the total phenotypic variance, whereas for AUDPC they explained 3–12% of the total proportion of phenotypic variance. Most of significant SNPs were consistent with the previous studies and assists to validate and fine map the big quantitative trait locus (QTL) regions into few markers’ specific regions. A set of putative candidate genes associated with the significant markers were identified and their functions revealed to be directly or indirectly involved in plant defense responses. Genomic prediction revealed reasonable prediction accuracies. The prediction accuracies significantly increased with increasing marker densities and training population size. These results support that MLN is a complex trait controlled by few major and many minor effect genes.

2017 ◽  
Vol 6 (2) ◽  
pp. 65
Author(s):  
Sitta J. ◽  
Nzuve F. M. ◽  
Olubayo F. M. ◽  
Mutinda C. ◽  
Muiru W. M. ◽  
...  

Maize (Zea mays L.) is the most widely grown staple food crop in Sub Saharan Africa (SSA) and occupies more than 33 million hectares each year. The recent outbreak and rapid spread of the Maize Lethal Necrosis (MLN) disease has emerged as a great challenge to maize production, threatening food security for the majority of households in the Eastern Africa region with yield loss estimated to be 50-90%. The disease is a result of synergistic interaction between two viruses, Sugarcane mosaic virus (SCMV) and Maize chlorotic mottle virus (MCMV). The objective of this study was to identify maize genotypes with resistance to MLN. In season one, 73 maize genotypes comprising 25 inbred lines from research institutes, 30 lines from the International Maize and Wheat Improvement Centre (CIMMYT) and 18 farmer varieties were screened for resistance to MLN. In season 2, only 48 genotypes were screened after some of the inbred lines showed complete susceptibility to MLN. These genotypes were grown in three replications in a completely randomized design in polythene bags in the greenhouse at the University of Nairobi. The plants were artificially inoculated using a mixture of SCMV and MCMV. .Weekly MLN disease severity scores using a scale of 1 to 5 (1 = highly resistant and 5 = highly susceptible) and % MLN incidence were recorded and eventually converted into Area under Disease Progress Curve (AUDPC) to give an indication of the disease intensity over time. The plants were allowed to grow to flowering stage to observe the effect of the MLN on the maize productivity. Analysis of Variance revealed wide genetic variation among the genotypes ranging from resistant to highly susceptible. In season 1, three farmer varieties namely MLR2, MLR11 and MLR13 showed resistance to MLN with a mean severity score of 2. In season 2, MLN12, MLN17, MLN18, MLN19, and MLR4 showed low MLN severity ranging from 2-3. The genotypes MLR6, MLR9, MLR16 and MLR18 showed MLN severity of 3 and early maturity traits. This study also validated the presence of MLN resistance among some CIMMYT lines depicted to show resistance in previous studies. These resistant genotypes could serve as donors in the introgression of the resistance into the adapted Kenyan maize backgrounds. This will go a long way in ensuring sustainable maize productivity while improving the livelihoods of the small-scale farmers who form the bulk of the major maize producers in Kenya.


2021 ◽  
Author(s):  
Olufemi Alabi

Abstract Introduction: In the past, SCMV and other SCMD-causal viruses have caused serious losses in various maize and sugarcane-growing regions, including Hawaii, Egypt, Natal (South Africa), Argentina, Puerto Rico, Cuba, Australia, USA (Koike and Gillaspie, 1989; Fuchs and Grüntzig, 1995; Chen et al., 2002) and several other countries in South America (Perera et al., 2012 and references therein). Epidemics have been followed by replacement of susceptible noble-type canes by hybrid canes with tolerance or, better still, resistance and the propagation of resistant maize genotypes (Silva-Rosales et al., 2015 and references therein). The evolution of new strains of SCMV has required a continuing breeding programme to prevent heavy losses. Losses caused by SCMV are mainly (1) a reduced yield of the crop, (2) the need to include mosaic resistance when breeding new cultivars, and (3) the slowing of the interchange of cultivars between countries because of quarantine concerns over the introduction of new strains of SCMV. Crop Losses: Crop losses caused by SCMV depend on many factors, including the susceptibility of the cultivars to the prevailing strains of SCMV, the incidence of infection, the prevailing environmental conditions, the stage of growth when infection occurs, and interaction with other agents affecting the crop. Crop losses can vary from negligible to severe. Some documented instances of heavy losses in sugarcane crops due to mosaic outbreaks are as follows. In the 1980s, losses on some farms in the Isis district of Queensland, Australia, were estimated to be about 50% (Jones, 1987). In some commercial plantings of cv. Q95 from an infected source, the infected plants had fewer tillers and were less vigorous than apparently healthy plants nearby (Ryan and Jones, 1986). In Guatemala in 1974-1976, many stunted stools of mosaic-affected cv. Q83 were responsible for lack of uniformity in fields near Santa Lucia. The cane tonnage in these fields was seriously reduced (Fors, 1978). Estimations of Potential Losses in Experiments: Sugarcane In Natal, South Africa, plots of sugarcane cv. NCo376 (highly susceptible) and N12 (moderately resistant) were established with either infected or healthy cane. The plots were harvested regularly and tested serologically for SCMV to the 6th ratoon. There was a decline in the number of shoots showing mosaic symptoms in both cultivars during the experiment. However, mean yield reductions were 22% for infected NCo376 and 16% for N12 compared with yields of initially healthy cane (Cronje et al., 1994). In Brazil, plots in two locations were planted with 0, 25, 50 and 100% initial SCMV infection. Virus spread was noticeable for cv. CB46/47, but negligible for cv. IAC50/134. For CB46/47 yield losses between initially healthy and 25% infected plots were 27% and 19% in the two locations; with 100% infection, yield reduction was 71% in both areas. For IAC50/134 the only significant difference in yield was between 0 and 100% infection, an 18% reduction in diseased plots in both areas (Matsuoka and Costa, 1974). In Java, Indonesia, field trials with 0 and 100% SCMV-infected seed cane gave sugar yield reductions of 9.3% for POJ3016 and 11.1% for POJ3067 associated with the disease (Kuntohartono and Legowo, 1970). In Spain, when healthy sugarcane was planted between rows infected by SCMV, the cultivars CO62/175 and NA56/79 were sufficiently resistant for commercial production, but losses of 0.4-0.5 t/ha were found for every 1% infection between the 2nd and 4th cutting (Olalla Mercade et al., 1984a). In Pakistan, mosaic-free seed cane gave a significantly higher yield of cane (48.5 t/ha) than mosaic-infected seed cane (44.5 t/ha) (Ahmad et al., 1991). Maize In East Africa, 10 susceptible maize hybrids had yield losses of 18-46% when inoculated with SCMV in the seedling stage (Louie and Darrah, 1980). In Germany, SCMV was more prevalent than MDMV, but had a similar effect on growth and yield of maize. Early infection reduced plant height by 25%, total weight by 38% and ear weight by 27% (Fuchs et al., 1990). Disease Complexes: SCMV and related potyviruses may occur in disease complexes with other plant pathogens; either additive or synergistic effects may occur. In Louisiana, USA, losses in sugarcane caused by Sorghum mosaic virus (formerly called SCMV-H) and ratoon stunting disease (RSD, caused by the bacterium Leifsonia xyli subsp. xyli) were additive in cv. CP67-412, but synergistic (greater than the sum of each disease separately) in CP65-357 (Koike, 1982). In Spain, RSD symptoms were associated with the presence of SCMV, and damage by RSD was greatest in fields with clear mosaic symptoms (Olalla Mercade et al., 1984b). In Thailand, inoculation of the downy mildew-susceptible maize cv. Guatemala with an SCMV-like virus increased susceptibility to Peronosclerospora sorghi only slightly, whereas with the resistant Suwan 1 maize cv., the virus increased susceptibility from 27 to 61% (Sutabutra et al., 1976). In many African (especial East African) countries, SCMV and some of the SCMD-causal viruses may also interact synergistically with Maize chlorotic mottle virus (genus Machlomovirus; family Tombusviridae) to cause maize lethal necrosis disease, an emerging debilitating disease of maize (Niblett and Claflin, 1978; Wangai et al., 2012) that can cause total crop loss.


2013 ◽  
Vol 14 (7) ◽  
pp. 555-562 ◽  
Author(s):  
Jian-xiang Wu ◽  
Qiang Wang ◽  
Huan Liu ◽  
Ya-juan Qian ◽  
Yan Xie ◽  
...  

Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Fatma Hussein Kiruwa ◽  
Samuel Mutiga ◽  
Joyce Njuguna ◽  
Eunice Machuka ◽  
Senait Senay ◽  
...  

Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n = 223). Analysis of a subset (n = 48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers’ interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamics in Tanzania and emphasizes the need for regional scientists to utilize farmers’ awareness in managing the disease.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 416 ◽  
Author(s):  
Simon Kiarie ◽  
Johnson O. Nyasani ◽  
Linnet S. Gohole ◽  
Nguya K. Maniania ◽  
Sevgan Subramanian

In eastern Africa, Maize lethal necrosis (MLN) is caused by the co-infection of maize plants with Maize chlorotic mottle virus (MCMV) (Tombusviridae: Machlomovirus) and Sugarcane mosaic virus (SCMV) (Potyviridae: Potyvirus). With the disease being new to Africa, minimal effective management strategies exist against it. This study examined the potential of 10 fungal isolates to colonize maize plants and induce resistance against MCMV and SCMV. Maize seeds were soaked in fungal inoculum, sown and evaluated for endophytic colonization. Fungus-treated plants were challenge-inoculated with SCMV and/or MCMV to assess the effects of fungal isolates on the viruses in terms of incidence, severity and virus titers over time. Isolates of Trichoderma harzianum, Trichoderma atroviride and Hypocrea lixii colonized different plant sections. All plants singly or dually-inoculated with SCMV and MCMV tested positive for the viruses by reverse transcription-polymerase chain reaction (RT-PCR). Maize plants inoculated by T. harzianum and Metarhizium. anisopliae resulted in up to 1.4 and 2.7-fold reduced SCMV severity and titer levels, respectively, over the controls but had no significant effect on MCMV. The results show that both T. harzianum and M. anisopliae are potential candidates for inducing resistance against SCMV and can be used for the integrated management of MLN.


Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1589-1592
Author(s):  
Lucy R. Stewart ◽  
Jane Todd ◽  
Kristen Willie ◽  
Deogracious Massawe ◽  
Nitika Khatri

A maize-infecting polerovirus variously named maize yellow dwarf virus RMV2 (MYDV-RMV2) and maize yellow mosaic virus (MaYMV) has been discovered and previously described in East Africa, Asia, and South America. It was identified in virus surveys in these locations instigated by outbreaks of maize lethal necrosis (MLN), known to be caused by coinfections of unrelated maize chlorotic mottle virus (MCMV) and any of several maize-infecting potyviruses, and was often found in coinfections with MLN viruses. Although sequenced in many locations globally and named for symptoms of related or coinfecting viruses, and with an infectious clone reported that experimentally infects Nicotiana benthamiana, rudimentary biological characterization of MaYMV in maize, including insect vector(s) and symptoms in single infections, has not been reported until now. We report isolation from other viruses and leaf tip reddening symptoms in several maize genotypes, along with transmission by two aphids, Rhopalosiphum padi and Rhopalosiphum maidis. This is important information distinguishing this virus and demonstrating that in single infections it causes symptoms distinct from those of potyviruses or MCMV in maize, and identification of vectors provides an important framework for determination of potential disease impact and management.


Sign in / Sign up

Export Citation Format

Share Document