scholarly journals Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm

2019 ◽  
Vol 132 (8) ◽  
pp. 2381-2399 ◽  
Author(s):  
Chelang’at Sitonik ◽  
L. M. Suresh ◽  
Yoseph Beyene ◽  
Michael S. Olsen ◽  
Dan Makumbi ◽  
...  
Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 16 ◽  
Author(s):  
Christine Nyaga ◽  
Manje Gowda ◽  
Yoseph Beyene ◽  
Wilson T. Muriithi ◽  
Dan Makumbi ◽  
...  

Maize lethal necrosis (MLN), caused by co-infection of maize chlorotic mottle virus and sugarcane mosaic virus, can lead up to 100% yield loss. Identification and validation of genomic regions can facilitate marker assisted breeding for resistance to MLN. Our objectives were to identify marker-trait associations using genome wide association study and assess the potential of genomic prediction for MLN resistance in a large panel of diverse maize lines. A set of 1400 diverse maize tropical inbred lines were evaluated for their response to MLN under artificial inoculation by measuring disease severity or incidence and area under disease progress curve (AUDPC). All lines were genotyped with genotyping by sequencing (GBS) SNPs. The phenotypic variation was significant for all traits and the heritability estimates were moderate to high. GWAS revealed 32 significantly associated SNPs for MLN resistance (at p < 1.0 × 10−6). For disease severity, these significantly associated SNPs individually explained 3–5% of the total phenotypic variance, whereas for AUDPC they explained 3–12% of the total proportion of phenotypic variance. Most of significant SNPs were consistent with the previous studies and assists to validate and fine map the big quantitative trait locus (QTL) regions into few markers’ specific regions. A set of putative candidate genes associated with the significant markers were identified and their functions revealed to be directly or indirectly involved in plant defense responses. Genomic prediction revealed reasonable prediction accuracies. The prediction accuracies significantly increased with increasing marker densities and training population size. These results support that MLN is a complex trait controlled by few major and many minor effect genes.


2013 ◽  
Vol 14 (7) ◽  
pp. 555-562 ◽  
Author(s):  
Jian-xiang Wu ◽  
Qiang Wang ◽  
Huan Liu ◽  
Ya-juan Qian ◽  
Yan Xie ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1448-1448 ◽  
Author(s):  
M. Lukanda ◽  
A. Owati ◽  
P. Ogunsanya ◽  
K. Valimunzigha ◽  
K. Katsongo ◽  
...  

Maize (Zea mays L.) is a major food and fodder crop cultivated on 1.54 million ha in the Democratic Republic of the Congo (DRC). In December 2013, unusually severe chlorotic mottle symptoms and pale green streaks were observed in local varieties (Mudishi 1 and 2, Bambou, Kasayi, H614, H613, and Mugamba) and exotic varieties (H520, H624, H403, HDK8031, and ZM607) in Beni, Lubero, and Rutshuru territories at 1,015 to 1,748 m elevation in North Kivu Province. Symptoms were prominent on newly emerging leaves that later developed marginal necrosis resembling the symptoms of maize lethal necrosis (MLN), caused by a dual infection of Maize chlorotic mottle virus (MCMV, genus Machlomovirus) and Sugarcane mosaic virus (SCMV, genus Potyvirus). Each of these viruses, but particularly MCMV, is also known to cause severe mosaic and mottling symptoms in maize (4). In January 2014, symptomatic and asymptomatic samples (n = 20) from disease-affected fields in Beni and Lubero provinces were collected for virus testing using Whatman FTA Classic Cards (1) and analyzed for MCMV (2681F: 5′-ATGAGAGCAGTTGGGGAATGCG and 3226R: 5′-CGAATCTACACACACACACTCCAGC) and SCMV (8679F: 5′-GCAATGTCGAAGAAAATGCG and 9595R: 5′-GTCTCTCACCAAGAGACTCGCAGC) by reverse transcription (RT)-PCR (4). Samples were also analyzed for Maize streak virus (MSV, genus Mastrevirus), an endemic virus in DRC, by PCR using MSV specific primers (MSV215-234: CCAAAKDTCAGCTCCTCCG and MSV1770-1792: TTGGVCCGMVGATGTASAG) (3). A DNA product of expected size (~520 bp) resulted only for MCMV in all the symptomatic plant samples. None of the samples tested positive for SCMV or MSV. RT-PCR analyses were performed to ascertain the absence of potyviruses using the degenerate potyvirus primers (CIFor: 5′GGIVVIGTIGGIWSIGGIAARTCIAC and CIRev: 5′ACICCRTTYTCDATDATRTTIGTIGC3′) (2) were also negative. Occurrence of MCMV in symptomatic samples was further confirmed by antigen-coated plate (ACP)-ELISA using anti-MCMV rabbit polyclonal antibodies produced at the Virology Unit, IITA, Ibadan, Nigeria. The RT-PCR product of MCMV was purified and sequenced in both directions (GenBank Accession No. KJ699379). Pairwise comparison of 518 bp nucleotide sequence corresponding to p32 and p37 open reading frames of MCMV by BLASTn search revealed 99.8% nucleotide sequence identity with an MCMV isolate from Kenya (JX286709), 98 to 99% identity with the isolates from China (JQ982468 and KF010583), and 96% identity with the isolates from the United States (X14736 and EU358605). MCMV is a newly emerging virus in Africa, first detected during a severe MLND outbreak in 2011 in Kenya (4). This disease has since become a serious threat to maize production in East Africa. MCMV has been reported in maize from Kenya, Rwanda, Tanzania, and Uganda. To our knowledge, this is the first report of MCMV occurrence in DRC. This finding confirms the further geographic expansion of MCMV and illustrates the need for further studies to identify vectors and also create awareness about the disease and to strengthen surveillance to prevent its further spread in the continent. References: (1) O. J. Alabi et al. J. Virol. Met. 154:111, 2008. (2) C. Ha et al. Arch. Virol. 153:25, 2008. (3) K. E. Palmer and E. P. Rybicki. Arch. Virol. 146:1089, 2001. (4) A. Wangai et al. Plant Dis. 96:1582, 2012.


Author(s):  

Abstract A new distribution map is provided for Maize chlorotic mottle virus. Tombusviridae: Machlomovirus. Host: Maize (Zea mays). Information is given on the geographical distribution in Asia (China, Hebei, Sichuan, Yunnan and Thailand), Africa (Kenya, Mozambique, Tanzania and Uganda), North America (Mexico, USA, Hawaii, Kansas, Nebraska and Texas) and South America (Argentina, Brazil and Peru).


Sign in / Sign up

Export Citation Format

Share Document