scholarly journals Geo-Analysis of Compatibility Determinants for Data in the Land and Property Register (LPR)

Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 303 ◽  
Author(s):  
Katarzyna Kocur-Bera ◽  
Marta Stachelek

The development of modern technologies and accessibility of data on space and the natural environment has led to their increasing use for socio-economic purposes. Data users believe that these systems reflect the reality in the field. This applies in particular to databases used for construction investment projects or as the basis for calculations of financial obligations, e.g., taxes. The Land and Property Register (LPR), which is part of the Land Administration System, serves a number of economic and legal purposes. This geo-system often contains low-quality information regarding the technical potential of modern data acquisition methods and is continuously updated. The authors propose a two-step analysis of data contained in the LPR. The first step identified the sources of discrepancies between data from the LPR and the reality in the field. The second step emphasises the importance of the factors under analysis, which include both a plot’s geometric parameters, the geo-location features (associated with the natural environment elements) and factors associated with the supplementary data acquisition methods. The results show that sufficient quality data play the main role in achieving compatibility between the data in the Land and Property Register and with reality. Studies conducted so far have dealt with data on a global scale and were based on in situ data and focused on the specific values of each plot under analysis.

Author(s):  
A. Manuel ◽  
A. C. Blanco ◽  
A. M. Tamondong ◽  
R. Jalbuena ◽  
O. Cabrera ◽  
...  

Abstract. Laguna Lake, the Philippines’ largest freshwater lake, has always been historically, economically, and ecologically significant to the people living near it. However, as it lies at the center of urban development in Metro Manila, it suffers from water quality degradation. Water quality sampling by current field methods is not enough to assess the spatial and temporal variations of water quality in the lake. Regular water quality monitoring is advised, and remote sensing addresses the need for a synchronized and frequent observation and provides an efficient way to obtain bio-optical water quality parameters. Optimization of bio-optical models is done as local parameters change regionally and seasonally, thus requiring calibration. Field spectral measurements and in-situ water quality data taken during simultaneous satellite overpass were used to calibrate the bio-optical modelling tool WASI-2D to get estimates of chlorophyll-a concentration from the corresponding Landsat-8 images. The initial output values for chlorophyll-a concentration, which ranges from 10–40 μg/L, has an RMSE of up to 10 μg/L when compared with in situ data. Further refinements in the initial and constant parameters of the model resulted in an improved chlorophyll-a concentration retrieval from the Landsat-8 images. The outputs provided a chlorophyll-a concentration range from 5–12 μg/L, well within the usual range of measured values in the lake, with an RMSE of 2.28 μg/L compared to in situ data.


2014 ◽  
Vol 5 (2) ◽  
pp. 3-11 ◽  
Author(s):  
Giancarlo Colmenares ◽  
Fadi Halal ◽  
Marek B. Zaremba

Abstract The probabilistic Ant Colony Optimization (ACO) approach is presented to solve the problem of designing an optimal trajectory for a mobile data acquisition platform. An ACO algorithm optimizes an objective function defined in terms of the value of the acquired data samples subject to different sets of constraints depending on the current data acquisition strategy. The analysis presented in this paper focuses on an environment monitoring system, which acquires in-situ data for precise calibration of a water quality monitoring system. The value of the sample is determined based on the concentration of the water pollutant, which in turn is obtained through processing of multi-spectral satellite imagery. Since our problem is defined in a continuous space of coordinates, and in some strategies each point is able to connect to any other point in the space, we adopted a hybrid model that involves a connection graph and also a spatial grid.


2016 ◽  
Vol 33 (12) ◽  
pp. 2743-2754 ◽  
Author(s):  
Yingjie Liu ◽  
Ge Chen ◽  
Miao Sun ◽  
Shuai Liu ◽  
Fenglin Tian

AbstractThis paper proposes a new algorithm for parallel identification of mesoscale eddies from global satellite altimetry data. By simplifying the recognition process and the sea level anomaly (SLA) contours’ search range, the method improves identification efficiency compared with the previous SSH-based method even in the single-threaded process. The global SLA map is divided into several regions. These regions are identified simultaneously with a new SSH-based method. All the eddy identification results of these regions are merged seamlessly into a global eddy map. A β-plane approximation is used to calculate the geostrophic speed in the equatorial band. Compared with the computation complexity of the previous SSH-based method, which is , the computation complexity of the new method is , where K is the number of threads and L is the number of regional SLA maps. When applying the new method to the global SLA map, the computation is ~100 times faster than the previous SSH-based method on an average computer. The new method characterizes an eddy structure by radius, amplitude, eddy core, closed SLA contour, and closed SLA contour with maximum average geostrophic speed. In situ data and another global eddy dataset are applied to validate the reliability of eddies detected by the new algorithm. Global eddy mean properties, variability, and the geographical distribution of both datasets are analyzed to demonstrate the performance of this new method and to help understand eddy activities on a global scale.


2016 ◽  
Vol 91 ◽  
pp. 49-63 ◽  
Author(s):  
Mohammad Javad Abdollahifard ◽  
Gregoire Mariethoz ◽  
Mohammadreza Pourfard

2014 ◽  
Vol 53 (9) ◽  
pp. 2171-2180 ◽  
Author(s):  
Christopher A. Shuman ◽  
Dorothy K. Hall ◽  
Nicolo E. DiGirolamo ◽  
Thomas K. Mefford ◽  
Michael J. Schnaubelt

AbstractThe stability of the Moderate Resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (IST) product from Terra was investigated for use as a climate-quality data record. The availability of climate-quality air temperature data TA from a NOAA observatory at Greenland’s Summit Station has enabled this high-temporal-resolution study of MODIS ISTs. During a >5-yr period (July 2008–August 2013), more than 2500 IST values were compared with ±3-min-average TA values from NOAA’s primary 2-m temperature sensor. This enabled an expected small offset between air and ice-sheet surface temperatures (TA > IST) to be investigated over multiple annual cycles. The principal findings of this study show 1) that IST values are slightly colder than the TA values near freezing but that this offset increases as temperature decreases and 2) that there is a pattern in IST–TA differences as the solar zenith angle (SoZA) varies annually. This latter result largely explains the progressive offset from the in situ data at colder temperatures but also indicates that the MODIS cloud mask is less accurate approaching and during the polar night. The consistency of the results over each year in this study indicates that MODIS provides a platform for remotely deriving surface temperature data, with the resulting IST data being most compatible with in situ TA data when the sky is clear and the SoZA is less than ~85°. The ongoing development of the IST dataset should benefit from improved cloud filtering as well as algorithm modifications to account for the progressive offset from TA at colder temperatures.


2018 ◽  
Vol 11 (3) ◽  
pp. 1793-1815 ◽  
Author(s):  
Julian Liman ◽  
Marc Schröder ◽  
Karsten Fennig ◽  
Axel Andersson ◽  
Rainer Hollmann

Abstract. Latent heat flux (LHF) is one of the main contributors to the global energy budget. As the density of in situ LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products have included estimates of systematic, random, and sampling uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching LHF-related pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3) to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground reference to be bias-free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large oceanic areas. Likewise, random uncertainties are derived, which include not only a retrieval component but also contributions from in situ measurement noise and the collocation procedure. A recently published random uncertainty decomposition approach is applied to isolate the random retrieval uncertainty of all LHF-related HOAPS parameters. It makes use of two combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise variances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterizations on monthly to multi-annual timescales. Results show that systematic LHF uncertainties range between 15 and 50 W m−2 with a global mean of 25 W m−2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions from qa (U) to the overall LHF uncertainty are on the order of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics with a global average of 37 W m−2. In a climatological sense, their magnitudes become negligible, as do respective sampling uncertainties. Regional and seasonal analyses suggest that largest total LHF uncertainties are seen over the Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the observed continuous global mean LHF increase up to 2009 needs to be treated with caution. The demonstrated approach can easily be transferred to other satellite retrievals, which increases the significance of the present work.


Author(s):  
Junehyeon Ahn ◽  
Hongkwon Kim ◽  
Kangho Byun ◽  
Youngmin Lee ◽  
Donghoon Jang ◽  
...  

For an application of fine pitch Ball Grid Array (BGA) or Land Grid Array (LGA) packages, ENEPIG is a promising surface finish technology of low cost, fine pitch and easy fabrication. In this paper, we study the drop test, one of the most important items of hand held device reliability test, of ENEPIG surface finished packages. This paper focuses on the drop test performance of a bond between the main board and three kinds of packages. Those packages are designed with a daisy chain for a detection of open/short during the drop test. The main board has a bar type outline and is suitable for an In-Situ data acquisition. Drop tester is composed of a drop test unit, a high speed resistance meter and a data acquisition system (PC). JEDEC Condition B (1,500G and 0.5milliseconds duration time and half-sine pulse) in JESD22-B111 Table 1 or in JESD22-B104-C Table 1 is applied as a test condition. After the drop test, the joint geometry and the intermetallic compound (IMC) of failure samples are analyzed through the cross section method. The result shows no breaks at the solder joint of package side. All breaks, however, are originated from the solder joints of main board side. It is a significant outcome of this work to show no performance difference between ENEPIG and Electrolytic Ni/Au.


2019 ◽  
Author(s):  
Nick Calta ◽  
Pete Collins ◽  
Aiden Martin ◽  
Manyalibo Matthews ◽  
Johanna Nelson Weker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document