scholarly journals Seismic Hazard Assessment for a Wind Farm Offshore England

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 14-31
Author(s):  
Brian Carlton ◽  
Andy Barwise ◽  
Amir M. Kaynia

Offshore wind has become a major contributor to reducing global carbon emissions. This paper presents a probabilistic seismic hazard analysis for the Sofia Offshore Wind Farm, which is located about 200 km north-east of England in the southern North Sea and will be one of the largest offshore wind farms in the world once completed. The seismic source characterization is composed of two areal seismic source models and four seismic source models derived using smoothed gridded seismicity with earthquake catalogue data processed by different techniques. The ground motion characterization contains eight ground motion models selected based on comparisons with regional data. The main findings are (1) the variation in seismic hazard across the site is negligible; (2) the main source controlling the hazard is the source that includes the 1931 Dogger Bank earthquake; (3) earthquake scenarios controlling the hazard are Mw = 5.0–6.3 and R = 110–210 km; and (4) the peak ground accelerations on rock are lower than for previous regional studies. These results could help guide future seismic hazard assessments in the North Sea.

2015 ◽  
Vol 31 (1_suppl) ◽  
pp. S31-S57 ◽  
Author(s):  
Morgan P. Moschetti ◽  
Peter M. Powers ◽  
Mark D. Petersen ◽  
Oliver S. Boyd ◽  
Rui Chen ◽  
...  

We present the updated seismic source characterization (SSC) for the 2014 update of the National Seismic Hazard Model (NSHM) for the conterminous United States. Construction of the seismic source models employs the methodology that was developed for the 1996 NSHM but includes new and updated data, data types, source models, and source parameters that reflect the current state of knowledge of earthquake occurrence and state of practice for seismic hazard analyses. We review the SSC parameterization and describe the methods used to estimate earthquake rates, magnitudes, locations, and geometries for all seismic source models, with an emphasis on new source model components. We highlight the effects that two new model components—incorporation of slip rates from combined geodetic-geologic inversions and the incorporation of adaptively smoothed seismicity models—have on probabilistic ground motions, because these sources span multiple regions of the conterminous United States and provide important additional epistemic uncertainty for the 2014 NSHM.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Rashad Sawires ◽  
Miguel A. Santoyo ◽  
José A. Peláez ◽  
Raúl Daniel Corona Fernández

Abstract Here we present a new updated and unified Poissonian earthquake catalog for Mexico. The details about the catalog compilation, the removal of duplicate events, unifying the magnitude scales, removal of dependent events through the declustering process and its completeness analysis are presented. Earthquake and focal mechanism data have been compiled from various local, regional and international sources. Large earthquake events (MW ≥ 6.5) have been carefully revised for their epicentral locations and magnitudes from trusted publications. Different magnitude-conversion relationships, compatible with available local and regional ones, has been established to obtain unified moment magnitude estimates for the whole catalog. Completeness periods for the declustered catalog were estimated for the definition of appropriate seismic source models for the whole territory. The final unified Poissonian earthquake catalog spans from 1787 to 2018, covering a spatial extent of 13° to 33°N and 91° to 117°W. This catalog is compatible with other published catalogs providing basis for new analysis related to seismicity, seismotectonics and seismic hazard assessment in Mexico.


2021 ◽  
pp. 875529302110075
Author(s):  
Robert R Youngs ◽  
Christine A Goulet ◽  
Yousef Bozorgnia ◽  
Nicolas Kuehn ◽  
Linda Al Atik ◽  
...  

As a companion article to Goulet et al., we describe implementation of the NGA-East ground motion characterization (GMC) model in probabilistic seismic hazard analysis (PSHA) for sites in the Central and Eastern United States (CEUS). We present extensions to the EPRI/DOE/NRC seismic source characterization (SSC) model for the CEUS needed for full implementation of NGA-East. Comparisons are presented to the EPRI GMC, the currently accepted model by the U.S. Nuclear Regulatory Commission for hazard assessment at nuclear facilities. Comparisons are presented both in terms of GMC model components and in the resulting seismic hazard assessments for a range of site locations in the CEUS. Illustrations of the effect of various components of the NGA-East GMC on seismic hazard results are also presented. Finally, we present recommendations for application of the NGA-East GMC in PSHA.


2019 ◽  
Vol 5 (5) ◽  
pp. 984-995
Author(s):  
Luis Fernando Vergaray Astupina ◽  
Zenón Aguilar B. ◽  
Renzo S. Cornejo

Throughout the years seismic hazard calculations in Peru have been developed using area sources models, having to date a great variety of models, however, since they are discretized planar models, they cannot adequately represent the continuity and subduction characteristics of the Nazca Plate. The main objective of this work is the developing of a surface subduction model (SSM), useful for seismic hazard assessments as well as the revision and control of previous models used in this sort of assessments. In this study a spatial interpolation was performed employing the Local Polynomial Interpolation method to capture short-range variation in addition to long-range trends. The data base is based on the compilation of seismic catalogs from Peruvian and international institutions such as the IGP, the USGS, the ISC and others, subsequently, in order to have independent events the elimination of duplicate events, aftershocks and foreshocks was carried out. Then, by interpolation of the focal depths of the independent events, a subduction surface model (SSM) was generated as well as a Standard Error Surface which supports a good correlation of the model. Furthermore, 14 transversal sections of the SSM was employed to compare with the hypocenter’s distributions, evidencing a good correlation with the spatial distribution of the events, in addition to adequately capturing the subduction characteristics of the Nazca Plate. Finally, a comparison was made between 2 Peruvian area models for seismic hazard and SSM developed in the present research, evidencing that seismic source models of the area type have deficiencies mainly in the depths they consider, thus is recommended the use of the present model for future seismic hazard assessments.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
S. Balassanian ◽  
T. Ashirov ◽  
T. Chelidze ◽  
A. Gassanov ◽  
N. Kondorskaya ◽  
...  

The GSHAP CAUCAS test area was established under the INTAS Ct.94-1644 (Test Area for sismic Hazard Assessment in the Caucasus) and NATO ARW Ct.95-1521 (Historical and Prehistorical Earthquakes in the Caucasus), with the initial support of IASPEI, UNESCO and ILP. The high tectonic interest and seismicity rate of the whole area, the availability of abundant multi-disciplinary data and the long established tradition in hazard assessment provide a unique opportunity to test different methodologies in a common test area and attempt to establish some consensus in the scientific community. Starting from the same input data (historical and instrumental seismic catalogue, lineament and homogeneous seismic source models) six independent approaches to seismic hazard assessment have been used, ranging from pure historical deterministic to seismotectonic probabilistic and areal assessment methodologies. The results are here compared.


2015 ◽  
Vol 31 (1_suppl) ◽  
pp. S109-S130 ◽  
Author(s):  
Oliver Boyd ◽  
Kathleen Haller ◽  
Nico Luco ◽  
Morgan Moschetti ◽  
Charles Mueller ◽  
...  

The USGS National Seismic Hazard Maps were updated in 2014 and included several important changes for the central United States (CUS). Background seismicity sources were improved using a new moment-magnitude-based catalog; a new adaptive, nearest-neighbor smoothing kernel was implemented; and maximum magnitudes for background sources were updated. Areal source zones developed by the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities project were simplified and adopted. The weighting scheme for ground motion models was updated, giving more weight to models with a faster attenuation with distance compared to the previous maps. Overall, hazard changes (2% probability of exceedance in 50 years, across a range of ground-motion frequencies) were smaller than 10% in most of the CUS relative to the 2008 USGS maps despite new ground motion models and their assigned logic tree weights that reduced the probabilistic ground motions by 5–20%.


2017 ◽  
Author(s):  
Hervé Jomard ◽  
Edward Marc Cushing ◽  
Luigi Palumbo ◽  
Stéphane Baize ◽  
Claire David ◽  
...  

Abstract. The French Radioprotection and Nuclear Safety Institute (IRSN), with the support of the Ministry of Environment, compiled a database (BDFA) in order to define and characterize known potentially active faults of metropolitan France. The general structure of BDFA is presented in this paper. BDFA contains to date a total of 136 faults and represent a first step toward the implementation of seismic source models that would be used for both deterministic and probabilistic hazard calculations. An example transposing BDFA into a fault source model for PSHA (Probabilistic Seismic Hazard Analysis) calculation is presented for the Upper Rhine Graben (Eastern France); and exploited in the parent paper (part B) in order to illustrate ongoing challenges for probabilistic fault-based seismic hazard calculations.


2003 ◽  
Vol 19 (1) ◽  
pp. 67-85
Author(s):  
Ken Hatayama ◽  
Shinsaku Zama

We compare the distribution of damage to housing caused by the 1995 Hyogo-ken Nanbu (Kobe) earthquake with those estimated for several source models proposed for this earthquake. This comparison aims at identifying source models that can provide loss estimates that are most appropriate for planning emergency response activities just after earthquakes and/or for preparing effective countermeasures for mitigation of future earthquake disasters. The results suggest the necessity of finite-fault slip models that can reproduce or predict accurately strong ground motion within a frequency range closely related to damage. The loss estimation just after earthquakes based on source models can be counted on in areas without dense strong-ground-motion observation networks. Even with the dense networks, source models will also be useful for accurate loss estimation in the immediate vicinity of earthquake source faults.


2021 ◽  
Author(s):  
Ilaria Mosca ◽  
Brian Baptie ◽  
Manuela Villani ◽  
Z. Lubkowski ◽  
T. Courtney

Abstract In probabilistic seismic hazard assessment, the development of the seismic source characterization, especially the geometry of the seismic source models (SSMs), is controversial because it often relies on expert judgment with different interpretations of the available data from seismology, tectonics, and geology. Based on the same input datasets, different teams of experts may derive different SSMs. In this context, the verification of the models through the comparison against a set of observations is a crucial step. We present a statistical tool to compare the SSMs with the observed seismicity and rank these SSMs based on their ability to replicate the past seismicity. We simulate many synthetic catalogues derived from candidate SSMs and compare them with the observed catalogue of mainshocks using the Metropolis-Hastings Algorithm to select those that fit the observed catalogue. The candidate SSMs are then expressed by a probability density function (pdf) using the set of synthetic catalogues accepted by the Metropolis-Hastings Algorithm and the Bayesian inference. To help practitioners in earthquake and civil engineering understand how this tool works in practice, the proposed approach is applied to a proposed new nuclear site in the United Kingdom, Wylfa Newydd.


Sign in / Sign up

Export Citation Format

Share Document