scholarly journals Linking Visual and Stress Wave Grading of Beech Wood from the Log to the Sawmill Product

2020 ◽  
Vol 3 (1) ◽  
pp. 65
Author(s):  
Aleš Straže ◽  
Denis Plavčak ◽  
Ervin Žveplan ◽  
Željko Gorišek

The quality potential and possibilities of using beech logs and sawn wood was investigated. Twenty-seven beech logs, with a mean diameter of 48 cm, were cut from 10 trees from a Hacquetio epipactidis-Fagetum site in SE Slovenia. The trees were pre-selected according to the national 5-level quality scale for forest stand evaluation, using two trees per class. Beech logs were classified according to the EN 1316-1 and sawn afterwards into unedged boards of 35 mm nominal thickness. Altogether, 250 boards were visually graded according to the rules of the European Organisation of the Sawmill Industry (EOS). Longitudinal vibration of logs and boards with the determination of stress wave velocity by MTG timber grader was additionally included into the quality assessment. In the case of logs, we confirmed significance of the relationship between visually assessed log quality and stress wave velocity. The stress wave velocity in logs was also related to the stress wave velocity in boards, where it varied considerably, especially for low-graded material. In the case of sawn wood, the relationship between sawn wood grade and stress wave velocity was insignificant. The research confirmed the possibility of presorting of logs, visually or non-destructively, for better classification and utilization of sawn timber.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6680-6695
Author(s):  
Xiwen Wei ◽  
Liping Sun ◽  
Hongjv Zhou ◽  
Yang Yang ◽  
Yifan Wang ◽  
...  

Based on the effects of stress wave propagation in larch (Larix gmelinii) wood, the propagation mechanism of stress wave was explored, and a theoretical model of the propagation velocity of stress waves in the three-dimensional space of wood was developed. The cross and longitudinal propagation velocities of stress wave were measured in larch wood under different moisture contents (46% to 87%, 56% to 96%, 20% to 62%, and 11% to 30%) in a laboratory setting. The relationships between the propagation velocity of stress waves and the direction angle or chord angle with different moisture contents were analyzed, and the three-dimensional regression models among four parameters were established. The analysis results indicated that under the same moisture content, stress wave velocity increased as the direction angle increased and decreased as chord angle increased, and the radial velocity was the largest. Under different moisture contents, stress wave velocity gradually decreased as moisture content increased, and the stress wave velocity was more noticeably affected by moisture content when moisture content was below the fiber saturation point (FSP, 30%). The nonlinear regression models of the direction angle, chord angle, moisture content, and the propagation velocity of stress wave fit the experiment data well (R2 ≥ 0.97).


1974 ◽  
Vol 22 (4) ◽  
pp. 710-721
Author(s):  
V. SCHENK ◽  
Z. SCHENKOVA

2017 ◽  
Vol 63 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Mariko Yamasaki ◽  
Chika Tsuzuki ◽  
Yasutoshi Sasaki ◽  
Yuji Onishi

1998 ◽  
Vol 120 (3) ◽  
pp. 321-326 ◽  
Author(s):  
J. J. Crisco ◽  
T. C. Dunn ◽  
R. D. McGovern

The velocity of longitudinal stress waves in an elastic body is given by the square root of the ratio of its elastic modulus to its density. In tendinous and ligamentous tissue, the elastic modulus increases with strain and with strain rate. Therefore, it was postulated that stress wave velocity would also increase with increasing strain and strain rate. The purpose of this study was to determine the velocity of stress waves in tendinous tissue as a function of strain and to compare these values to those predicted using the elastic modulus derived from quasi-static testing. Five bovine patellar tendons were harvested and potted as bone–tendon–bone specimens. Quasi-static mechanical properties were determined in tension at a deformation rate of 100 mm/s. Impact loading was employed to determine wave velocity at various strain levels, achieved by preloading the tendon. Following impact, there was a measurable delay in force transmission across the specimen and this delay decreased with increasing tendon strain. The wave velocities at tendon strains of 0.0075, 0.015, and 0.0225 were determined to be 260 ± 52 m/s, 360 ± 71 m/s, and 461 ± 94 m/s, respectively. These velocities were significantly (p < 0.01) faster than those predicted using elastic moduli derived from the quasi-static tests by 52, 45, and 41 percent, respectively. This study has documented that stress wave velocity in patellar tendon increases with increasing strain and is underestimated with a modulus estimated from quasi-static testing.


Holzforschung ◽  
2005 ◽  
Vol 59 (2) ◽  
pp. 230-231 ◽  
Author(s):  
Ferenc Divos ◽  
Levente Denes ◽  
Guillermo Iñiguez

Sign in / Sign up

Export Citation Format

Share Document