scholarly journals Bioaccumulation and Biomagnification of 2-Ethylhexyl-4-dimethylaminobenzoate in Aquatic Animals

Author(s):  
Guanghua Lu ◽  
Ranran Zhou ◽  
Sheng Li ◽  
Tianjian Dang ◽  
Jianchao Liu

2-Ethylhexyl-4-dimethylaminobenzoate (EHDAB) is a commonly used organic ultraviolet filter. The bioaccumulation and biomagnification of EHDAB were investigated in two aquatic animals, the larvae of midge (Chironomus riparius) and crucian carp (Carassius carassius), and the metabolic enzyme responses in fish liver were determined. EHDAB in the larvae of midge reached a steady state within 10 days of sediment exposure. The biota-sediment accumulation factors ranged from 0.10 to 0.54, and were inversely proportional to the exposure concentrations. The EHDAB-contaminated larvae were used to feed the crucian carp. Within 28 days of feeding exposure, the EHDAB levels in fish tissues gradually increased with the increase of the exposure concentration, exhibiting an apparent concentration-dependence and time-dependence. The liver and kidneys were the main organs of accumulation, and the biomagnification factors of EHDAB ranged from 8.97 to 11.0 and 6.44 to 10.8, respectively. In addition, EHDAB significantly increased the activities of cytochrome P450 (CYP) 1A, CYP3A and glutathione S-transferase in the fish liver. Our results indicate that EHDAB may pose a risk of biomagnification in an aquatic environment and influence the biological processes of exposed organisms.

Physiology ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Angela Fago ◽  
Frank B. Jensen

Among vertebrates able to tolerate periods of oxygen deprivation, the painted and red-eared slider turtles ( Chrysemys picta and Trachemys scripta) and the crucian carp ( Carassius carassius) are the most extreme and can survive even months of total lack of oxygen during winter. The key to hypoxia survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and–in air-breathing animals–redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals.


Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 184-205
Author(s):  
Nanxuan Mei ◽  
Jonas Hedberg ◽  
Mikael T. Ekvall ◽  
Egle Kelpsiene ◽  
Lars-Anders Hansson ◽  
...  

Cobalt (Co) nanoparticles (NPs) may be diffusely dispersed into natural ecosystems from various anthropogenic sources such as traffic settings and eventually end up in aquatic systems. As environmentally dispersed Co NPs may be transferred through an aquatic food web, this study investigated this transfer from algae (Scendesmus sp.) to zooplankton (Daphnia magna) to fish (Crucian carp, Carassius carassius). Effects of interactions between naturally excreted biomolecules from D. magna and Co NPs were investigated from an environmental fate perspective. ATR-FTIR measurements showed the adsorption of both algae constituents and excreted biomolecules onto the Co NPs. Less than 5% of the Co NPs formed heteroagglomerates with algae, partly an effect of both agglomeration and settling of the Co NPs. The presence of excreted biomolecules in the solution did not affect the extent of heteroagglomeration. Despite the low extent of heteroagglomeration between Co NPs and algae, the Co NPs were transferred to the next trophic level (D. magna). The Co uptake in D. magna was 300 times larger than the control samples (without Co NP), which were not influenced by the addition of excreted biomolecules to the solution. Significant uptake of Co was observed in the intestine of the fish feeding on D. magna containing Co NPs. No bioaccumulation of Co was observed in the fish. Moreover, 10–20% of the transferred Co NP mass was dissolved after 24 h in the simulated gut solution of the zooplankton (pH 7), and 50–60% was dissolved in the simulated gut solution of the fish (pH 4). The results elucidate that Co NPs gain different properties upon trophic transfer in the food web. Risk assessments should hence be conducted on transformed and weathered NPs rather than on pristine particles.


2018 ◽  
Vol 32 (9) ◽  
pp. e22196 ◽  
Author(s):  
Muhammet Serhat Özaslan ◽  
Yeliz Demir ◽  
Mine Aksoy ◽  
Ömer Irfan Küfrevioğlu ◽  
Şükrü Beydemir

2021 ◽  
Vol 15 (3) ◽  
pp. 225-237
Author(s):  
Muhammad Inad Ghazwan

The present study attempts to identify some of the differences between the skull bones of two species Cyprinus carpio and Carassius carassius, which belong to the Cyprinidae family. The study is a taxonomic diagnostic study between the two species which are considered local fish abundant in the Iraqi aquatic environment


2021 ◽  
Author(s):  
Guofa Zhou ◽  
Yiji Li ◽  
Brook Jeang ◽  
Xiaoming Wang ◽  
Daibin Zhong ◽  
...  

Piperonyl butoxide (PBO)-synergized pyrethroid products are widely available for the control of pyrethroid-resistant mosquitoes. To date, no study has formally examined mosquito resistance to PBO-synergized insecticides. We used Culex quinquefasciatus as a model mosquito examined the insecticide resistance mechanisms of mosquitoes to PBO-synergized pyrethroid using modified World Health Organization tube bioassays and biochemical analysis of metabolic enzyme expressions prior- and post-PBO exposure. We measured mosquito mortalities and metabolic enzyme expressions in mosquitoes with/without pre-exposure to different PBO concentrations and exposure durations. We found that field Culex quinquefasciatus mosquitoes were resistant to all insecticides tested, including PBO-synergized pyrethroids (mortality ranged from 3.7±4.7% to 66.7±7.7%), except malathion. Field mosquitoes had elevated levels of carboxylesterase (COE, 3.8-fold) and monooxygenase (P450, 2.1-fold) but not glutathione S-transferase (GST) compared to susceptible mosquitoes. When the field mosquitoes were pre-exposed to 4% PBO, the 50% lethal concentration of deltamethrin was reduced from 0.22% to 0.10%, compare to 0.02% for susceptible mosquitoes. Knockdown resistance gene mutation (L1014F) rate was 62% in field mosquitoes. PBO pre-exposure suppressed P450 enzyme expression levels by 25~34%, GST by 11%, and had no impact on COE enzyme expression. Even with the optimal PBO concentration and exposure duration, field mosquitoes had significantly higher P450 enzyme expression levels after PBO exposure compared to laboratory controls. These results demonstrate that PBO alone may not be enough to control highly pyrethroid resistant mosquitoes due to the multiple resistance mechanisms. Mosquito resistance to PBO-synergized insecticide should be closely monitored.


Sign in / Sign up

Export Citation Format

Share Document