scholarly journals Certainty Level of Water Delivery of the Required Quality by Water Supply Networks

Author(s):  
Marian Kwietniewski ◽  
Katarzyna Miszta-Kruk ◽  
Kaja Niewitecka ◽  
Mirosław Sudoł ◽  
Krzysztof Gaska

The security of water delivery of the required quality by water supply networks is identified with the concept of reliability. Therefore, a method of reliability evaluation of water distribution of the required quality was developed. The method is based on the probabilistic character of secondary water contamination in the water supply network. Data for the method are taken from monitoring of the water distribution system. The method takes into consideration the number and locations of individual measurement points and the results of the tests of water quality indicators at these points. The sets of measurement points and water quality indicators constitute a matrix research (observation) field in the model. The proposed method was implemented to assess the reliability of a water distribution process with respect to water with the required microbiological quality indicators in a real distribution system.

2011 ◽  
Vol 13 (3) ◽  
pp. 390-400 ◽  
Author(s):  
Kui Chang ◽  
Jin Liang Gao ◽  
Wen Yan Wu ◽  
Yi Xing Yuan

In order to evaluate water quality for a large water distribution network comprehensively, a two-stage classification method was used and the clustering methods, self-organizing map (SOM), K-means method and fuzzy c-mean (FCM), were represented. With these clustering methods, the pipes of a large real water distribution network were divided into some groups considering one or more water quality indicators synchronously. The water quality indicators of residual chlorine, water age, THMs, TAAs, TOC and BDOC are used in this paper. Residual chlorine and water age are two main water quality indicators. THMs and TAAs can represents the disinfection byproducts information. And TOC and BDOC are used to represents biological stability. According to the clustering results, the status of water quality of the water network was analysed. The results showed that the classification of SOM could express the comprehensive water quality in a water distribution network (WDN) directly and vividly by high-dimension water quality indicator projection to a low dimensional topology grid and that two-stage classification method has higher efficiency in comparison to the traditional clustering method. Water quality comprehensive evaluation was of significance for locating water quality monitoring, water network rehabilitation and expansion.


2015 ◽  
Vol 63 (1) ◽  
pp. 155-161 ◽  
Author(s):  
D. Kowalski ◽  
B. Kowalska ◽  
M. Kwietniewski

Abstract The paper discusses issues related to monitoring quality and pressure of water transmitted using water supply networks. Special attention was paid to methods of determining location of measuring points, which to a large extent influence effectiveness of the monitoring system. The purpose of the paper is to present authors’ own method of determining location of points of measuring quality and pressure of transmitted water. The basis for considerations was a real water supply network in a city of about 10.000 residents. The presented method is based on existence of self-similarity properties of the set of fractals formed by the geometrical structure of the water supply network. It is a rank-ordered method involving 3 basic stages - reduction of the number of potential measuring points, providing more details of a target location and checking usefulness of selected points for monitoring purposes. At the preparatory stage, existence of fractal properties of the examined network structure is required to be demonstrated as well as the construction of its numerical model. The ranking is based on two indicators referring by analogy to human circulatory system monitoring and elements of the risk theory. This theory was also used to evaluate usefulness of selected measuring points for monitoring purposes.


2013 ◽  
Vol 13 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Y. Arai ◽  
A. Koizumi ◽  
T. Inakazu ◽  
A. Masuko ◽  
S. Tamura

This research is aimed at multiple-objective optimization of water operations in a water supply and distribution system. These objectives include reducing energy use while at the same time meeting water quality needs. The first objective is to propose water operations aimed at minimizing energy consumption. The second is to optimize water supply and distribution from the standpoint of water quality based on total organic carbon and the third is to attempt optimization that satisfies the first two objectives through multipurpose fuzzy linear programming (LP). This study mathematically formulates water operation planning issues focusing on reducing energy consumption and improving water quality in a water distribution system. Estimates show that a reduction in energy use of around 10% can be expected. Fuzzy LP is applied to achieve a balance among multiple objectives. The research demonstrates the effectiveness of the proposed multipurpose optimization when applied to trade-offs in water operation.


Author(s):  
Luckson Zvobgo

Background: Provision of reliable water services is crucial for urban livelihood. In Chitungwiza, provision of water services has been deteriorating since the millennium with residents losing hope for better services. The poor supply of municipal water in Chitungwiza has led to a chronic ‘dry taps situation’ where household taps are dry from periods of several consecutive days to months.Aim: This article assesses the water supply challenges in Chitungwiza through performance evaluation of the water supply services.Setting: The study was conducted in 26 suburbs in the four residential zones of Chitungwiza Municipality.Methods: Performance evaluation of water supply services was carried out using seven performance indicators: coverage of water supply connection, extent of metering of water connections, presence of leakages, extent of non-revenue water, continuity of water supply, quality of water supplied and efficiency in redressal of customer complaints. Two hundred and ninety-eight semi-structured questionnaires were administered in four residential zones of Chitungwiza. Water distribution system surveillance and key informant interviews were also conducted.Results: The results indicate high non-revenue water, poor water infrastructure maintenance, lack of water investment leading to widespread leakages in the distribution system, poor water quality supply and unreliable services provision. A majority, 80.2%, rated the municipal water supply services as poor. To cope with this new reality, households in Chitungwiza implemented a ‘source switch’ to new sources.Conclusion: Household shallow wells were identified as the main adapting strategy with 51.7% households relying on wells despite concerns about the water quality of the wells. Chitungwiza municipality should implement structural reforms that allow the current water service provision to improve.


2014 ◽  
Vol 14 (6) ◽  
pp. 1076-1086 ◽  
Author(s):  
M. Al-Zahrani ◽  
K. Moied

Despite good quality assurance and conformance to the standards at the treatment plants, water quality could vary considerably within the distribution network. As water flows through the pipe network, its quality undergoes various transformations due to many factors such as the properties of the finished water, pipe materials, water temperature, water age and low level of disinfectant residuals. Sampling and monitoring of water quality is, therefore, important to ensure that clean and safe water is transported to the consumers. In this paper, a model based on genetic algorithms and fuzzy logic was developed to identify locations of water quality monitoring stations in a water distribution system. While identifying the monitoring locations, multiple sources of water supply, water age and constituent concentration were considered. The developed model was applied on a hypothetical network and results indicate that monitoring stations are proposed at locations with maximum coverage of water supply within the network and maximum violation for average water age and constituent concentrations.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4247 ◽  
Author(s):  
José Pérez-Padillo ◽  
Jorge García Morillo ◽  
José Ramirez-Faz ◽  
Manuel Torres Roldán ◽  
Pilar Montesinos

Increasing the efficiency of water supply networks is essential in arid and semi-arid regions to ensure the supply of drinking water to the inhabitants. The cost of renovating these systems is high. However, customized management models can facilitate the maintenance and rehabilitation of hydraulic infrastructures by optimizing the use of resources. The implementation of current Internet of Things (IoT) monitoring systems allows decisions to be based on objective data. In water supply systems, IoT helps to monitor the key elements to improve system efficiency. To implement IoT in a water distribution system requires sensors that are suitable for measuring the main hydraulic variables, a communication system that is adaptable to the water service companies and a friendly system for data analysis and visualization. A smart pressure monitoring and alert system was developed using low-cost hardware and open-source software. An Arduino family microcontroller transfers pressure gauge signals using Sigfox communication, a low-power wide-area network (LPWAN). The IoT ThingSpeak platform is used for data analysis and visualization. Additionally, the system can send alarms via SMS/email in real time using the If This, Then That (IFTTT) web service when anomalous pressure data are detected. The pressure monitoring system was successfully implemented in a real water distribution network in Spain. It was able to detect both breakdowns and leaks in real time.


2020 ◽  
Author(s):  
Mireia Plà-Castellana ◽  
Julia Roselló-Cano ◽  
Alícia Maestro ◽  
Jordi Raich-Montiu ◽  
Miquel Paraira

<p>Monitoring critical drinking water points in the water distribution system of Barcelona (Catalonia, Spain) is an increasing concern. The control of several quality parameters as free chlorine, total organic carbon (TOC), conductivity, turbidity, temperature, colour, pressure and flow are necessary to ensure a supply of safe and clean drinking water to consumers.</p><p>The aim of this project is to investigate the consequences of alterations detected in the water distribution system, to find the focus of occurrences and controlling them to provide a better drinking water quality to Barcelona citizens.</p><p>Barcelona procures drinking water to its citizens via two main water sources: Ter and Llobregat Rivers. They have intrinsic quality differences and they must be treated in different ways. With the purpose of controlling and investigating how these differences impact the water quality supplies, two s::can sensor systems were installed in the Poblenou District (Barcelona). The first one (nano::station) was installed in a drinking water distribution pipe, and the second one (pipe::scan) was installed in a domestic water supply network. Both systems were situated in the same drinking water confluence sector in order to compare the data recorded and to visualise water quality changes. More than 20 events were recorded, analysed and classified according to whether the alteration was due to an occasional event in the domestic water supply or to an external incident from the water distribution system. Some detected events were related to an increase of temperature, a rise of water demand, the water origins or changes in pressure.</p><p>One important event recorded by the installed probes was an increase of temperature, directly associated with an augment of total organic matter (TOC) at the beginning of summer (June 2018). A great rise of TOC would be the causer of high consumption of free chlorine that it could be hazardous for human health if there is not enough chlorine dissolved in water. Due to this temperature increment (from 15°C to 23°C in a few days), the minimum level of chlorine (less than 0.2 mg/L) was registered in the Poblenou Sector.</p><p>Nano::station and pipe::scan sensor systems are excellent tools as on-line water quality controllers. These kinds of sensors can record variations occurring every two minutes, giving a great perception of the events that are happening at different points of the drinking water city-wide network.</p>


Sign in / Sign up

Export Citation Format

Share Document