scholarly journals Design and Implementation of a Pressure Monitoring System Based on IoT for Water Supply Networks

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4247 ◽  
Author(s):  
José Pérez-Padillo ◽  
Jorge García Morillo ◽  
José Ramirez-Faz ◽  
Manuel Torres Roldán ◽  
Pilar Montesinos

Increasing the efficiency of water supply networks is essential in arid and semi-arid regions to ensure the supply of drinking water to the inhabitants. The cost of renovating these systems is high. However, customized management models can facilitate the maintenance and rehabilitation of hydraulic infrastructures by optimizing the use of resources. The implementation of current Internet of Things (IoT) monitoring systems allows decisions to be based on objective data. In water supply systems, IoT helps to monitor the key elements to improve system efficiency. To implement IoT in a water distribution system requires sensors that are suitable for measuring the main hydraulic variables, a communication system that is adaptable to the water service companies and a friendly system for data analysis and visualization. A smart pressure monitoring and alert system was developed using low-cost hardware and open-source software. An Arduino family microcontroller transfers pressure gauge signals using Sigfox communication, a low-power wide-area network (LPWAN). The IoT ThingSpeak platform is used for data analysis and visualization. Additionally, the system can send alarms via SMS/email in real time using the If This, Then That (IFTTT) web service when anomalous pressure data are detected. The pressure monitoring system was successfully implemented in a real water distribution network in Spain. It was able to detect both breakdowns and leaks in real time.

2019 ◽  
Vol 26 (1) ◽  
pp. 101-118
Author(s):  
Maciej Potyralla

Abstract Modeling of the loads of water supply networks and their subsequent forecasting is an element necessary for making optimum decisions in the process of planning the development and operation of the water supply networks. The results of this modeling are decisive for the selection of the diameters of the pipelines and their arrangement on the water demand area. This study presents the results of estimation of average values of loads for the selected investment variants. The aim of the article is to present the possibility of simulations and analyses of the geostatistical interpolation methods. Data input in the model regarded the fragment of the real water supply network administered by the Municipal Water and Sewerage Company in Warszawa. Results of the computer analyses for the presented investment variants were related to the operating data of the water supply network and the data on water demand for the years 2014-2017 and 2018-2025. The aim of this paper is to present the advantages of GIS for the water supply systems and to prove that using the appropriate IT system, with provision of proper data processing, may lead to decisions which are optimum in view of the established, often very complex criteria.


Author(s):  
Marian Kwietniewski ◽  
Katarzyna Miszta-Kruk ◽  
Kaja Niewitecka ◽  
Mirosław Sudoł ◽  
Krzysztof Gaska

The security of water delivery of the required quality by water supply networks is identified with the concept of reliability. Therefore, a method of reliability evaluation of water distribution of the required quality was developed. The method is based on the probabilistic character of secondary water contamination in the water supply network. Data for the method are taken from monitoring of the water distribution system. The method takes into consideration the number and locations of individual measurement points and the results of the tests of water quality indicators at these points. The sets of measurement points and water quality indicators constitute a matrix research (observation) field in the model. The proposed method was implemented to assess the reliability of a water distribution process with respect to water with the required microbiological quality indicators in a real distribution system.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1037 ◽  
Author(s):  
Ewa Ociepa ◽  
Maciej Mrowiec ◽  
Iwona Deska

This paper presents the analysis and assessment of water losses in water distribution systems of three water supply companies operating water supply networks in the area of effect of underground mining. The analysis of water losses was conducted based on numerous indices allowing for obtaining objective information on the condition of the water supply system. The method of the analysis of percentage water loss index was extended by the methods of determination of losses according to the International Water Association. The results of the analysis lead to the conclusion that with regular actions, the companies have reduced water losses in recent years to a level considered to be good compared to national data and average compared to international standards. The value of the failure intensity index for all companies in 2011 was over 1.0 while currently it is about 0.5. The decrease in Non-Revenue Water basic loss index (NRWB) from more than 20% for all analysed companies in 2008 to a few percent in 2017 and the decrease in Infrastructure Leakage Index (ILI) for companies A and C to less than 2.0 are evidence of the good condition of the network. This is also confirmed by the unit water loss index per capita, with its value in 2017 being 9.1 dm3/(inhabitant day) for company A, 11 dm3/(inhabitant·day) for B and 7.4 dm3/(inhabitant·day) for C. The several years of analysis and evaluation of numerous indices of water loss presented in the paper reveals the effectiveness of the adopted strategies of reducing leakages in the distribution system. It should be emphasized that the analysed companies have been involved in comprehensive initiatives aimed at reducing water leakages, resulting in a substantial reduction in water losses. GIS monitoring systems and databases are particularly helpful in reducing water losses. The basis of the activities is monitoring of flow and pressure in water supply networks and active leakage control. Network zoning with simultaneous observation of minimum night-time flows allows for preliminary location of the failure. Equipping companies with special leakage detection devices such as geophones, stethophones or correlators enables quick detection of leakages. The next step is to replace water meters with more and more accurate ones and to implement radio reading of water meters. All analysed companies perform systematic replacement of old steel and cast iron pipes which cause a large number of leakages that are often difficult to identify, thus leading to water losses.


2018 ◽  
Vol 212 ◽  
pp. 06001 ◽  
Author(s):  
Alexander Alexeev ◽  
Nikolay Novitsky

The paper presents a brief description of the problems of making technological decisions to manage the development and functioning of water supply networks in conditions of territorial, structural, and temporal disconnection of the decision-making processes at WKX enterprises. An approach to overcome such problems is proposed, based on the application of end-to-end modeling technologies and a single information space of the enterprise based on the application of the ANGARA-VS information and computing complex. Its brief characteristics and functions are given. The experience of automation of development of operational modes and dispatching management and development of perspective schemes of water supply in Municipal Unitary Enterprise "Vodokanal", Irkutsk.


Author(s):  
А.В. Степакин ◽  
А.Н. Перегуда ◽  
С.Г. Зайцева ◽  
Д.А. Горбачев ◽  
М.Н. Сопыряев

Природный дефицит водных ресурсов в сочетании с высокой степенью износа систем водоснабжения обусловливает напряженную ситуацию с обеспечением питьевой водой в Крыму. За последние несколько лет для решения проблемы на региональном и федеральном уровне были разработаны и реализуются программы модернизации водного хозяйства полуострова. Одной из ключевых задач этих программ является снижение потерь воды, которые в настоящее время достигают 40–60%. Описан комплекс мероприятий, направленных на снижение потерь воды в г. Севастополе. Комплекс мер, разработанный в соответствии с международным опытом и российскими рекомендациями, учитывает существующее состояние системы водоснабжения Крыма. Мероприятия включают в себя создание современного комплекса управления сетями, зонирование водопроводной сети, регулирование давления, мониторинг и устранение утечек. По результатам анализа производственных показателей определено, что первоочередным мероприятием для Севастополя является внедрение современной системы акустического мониторинга на распределительных сетях, которая позволит эффективно обнаруживать скрытые утечки и сэкономить городу тысячи кубометров дефицитной питьевой воды. Описаны результаты пилотного проекта по обследованию 5 км водопроводных сетей системой акустического мониторинга. The natural scarcity of water resources coupled with a high degree of deterioration of water supply systems result in a tense situation with the drinking water supply in Crimea. Over the past few years, a number of programs of upgrading the peninsula's water industry have been developed and are being implemented in order to solve the problem at the regional and federal levels. One of the key objectives of these programs is to reduce water losses that currently reach 40–60%. A set of measures aimed at reducing water losses in Sebastopol is described. The set of measures developed in accordance with the international experience and Russian recommendations takes into account the current condition of the Crimean water supply system. The activities include designing an advanced network management complex, zoning of the water supply network, pressure regulation, monitoring and elimination of leaks. Based on the results of the analysis of the performance indicators, it was determined that the priority measure for Sebastopol was the introduction of an advanced acoustic monitoring system in the water distribution networks that would provide for detecting effectively latent leaks and saving the city thousands of cubic meters of scarce drinking water. The results of a pilot project on the inspection of 5 km of the water supply networks using the acoustic monitoring system are described.


2017 ◽  
Vol 10 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Rachid Masmoudi ◽  
Ahmed Kettab ◽  
Bernard Brémond

Demand for drinking domestic water is continuously increasing specially in urban centres which experience high demographic expansion. The decrease of water losses in water supply networks can help preserve such a rare resource. Low number of water meters and intermittent supply make it difficult to quantify the leaking volumes of water. This article presents an analysis of the consumption for drinking water based on an extrapolation from a sample of consumers on whom data are available. Comparison of the volumes of water produced allows a determination of the losses in the water supply system. This analysis is completed by measurements of night flows. The results obtained may be relied on for an evaluation of the needs for drinking water in the South of Algeria, and for future regional development. The study indicates a high rate of water losses in the distribution network, reaching about 40%, and over-consumption due to an insufficient number of water meters and discontinuous supply. It is recommended that water meters come into general use and defective parts of the network are rehabilitated. We will try then to make the necessary recommendations in order to better functioning of the water supply systems in Algeria.


2013 ◽  
Vol 13 (2) ◽  
pp. 552-560 ◽  
Author(s):  
Lucy Corcoran ◽  
Paul Coughlan ◽  
Aonghus McNabola

The supply and treatment of water is a highly energy intensive process, resulting in large amounts of greenhouse gas emissions as well as incurring large economic costs. Both governments and water service providers worldwide recognise the need for more sustainable water supply systems. In recent years, the use of hydropower turbines within water supply networks has been shown as a viable option for electricity generation. Energy can be recovered in water supply networks at locations of excessively high flow or pressure without loss in the level of service to consumers. The control of pressure to prevent burst pipes and to maintain a reliable water supply service is a top priority for water service providers. This paper presents the results of an analysis of the potential of hydropower energy recovery within water distribution systems in the UK and Ireland. Pressure and flow data were analysed to determine the extent of the potential for energy recovery. The effect of flow rate variation on turbine selection and efficiency was investigated, as well as investment payback period. It was concluded that the sustainability of water supply can be improved through the implementation of small-scale hydropower turbines within water supply networks.


2017 ◽  
Vol 10 (2) ◽  
pp. 162-168
Author(s):  
Rachid Masmoudi ◽  
Ahmed Kettab ◽  
Bernard Brémond

Demand for drinking domestic water is continuously increasing specially in urban centres which experience high demographic expansion. The decrease of water losses in water supply networks can help preserve such a rare resource. Low number of water meters and intermittent supply make it difficult to quantify the leaking volumes of water. This article presents an analysis of the consumption for drinking water based on an extrapolation from a sample of consumers on whom data are available. Comparison of the volumes of water produced allows a determination of the losses in the water supply system. This analysis is completed by measurements of night flows. The results obtained may be relied on for an evaluation of the needs for drinking water in the South of Algeria, and for future regional development. The study indicates a high rate of water losses in the distribution network, reaching about 40%, and over-consumption due to an insufficient number of water meters and discontinuous supply. It is recommended that water meters come into general use and defective parts of the network are rehabilitated. We will try then to make the necessary recommendations in order to better functioning of the water supply systems in Algeria.


Sign in / Sign up

Export Citation Format

Share Document