scholarly journals Selection of Level-Dependent Hearing Protectors for Use in An Indoor Shooting Range

Author(s):  
Rafal Mlynski ◽  
Emil Kozlowski

The high sound pressure level generated by impulse noise produced in an indoor shooting range makes it necessary to protect the hearing of the people it affects. Due to the need for verbal communication during training at a shooting range, level-dependent hearing protectors are useful. The objective of this study was to answer the question of whether it is possible to properly protect the hearing of a shooting instructor using level-dependent hearing protectors. The noise parameters were measured in the places where the instructor was present at the shooting range. The division of a specific group of trained shooters into subgroups consisting of three or six simultaneously shooting individuals did not significantly affect the exposure of the shooting instructor to the noise. An assessment of noise reduction was carried out for eight models of earmuffs and two variants of earplugs, using computational methods for the selection of hearing protectors. Among the noise parameters, both the A-weighted equivalent sound pressure level and the C-weighted peak sound pressure level were taken into account. Depending on the assessment criterion adopted, a sufficient reduction in impulse noise was provided by either four or six out of the 10 hearing protectors included in the study.

2015 ◽  
Vol 39 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Rafał Młyński ◽  
Emil Kozłowski ◽  
Jan Adamczyk

Abstract The impulse noise is agent harmful to health not only in the case of shots from firearms and the explosions of explosive materials. This kind of noise is also present in many workplaces in the industry. The paper presents the results of noise parameters measurements in workplaces where four different die forging hammers were used. The measured values of the C-weighted peak sound pressure level, the A-weighted maximum sound pressure level and A-weighted noise exposure level normalized to an 8 h working day (daily noise exposure level) exceeded the exposure limit values. For example, the highest measured value of the C-weighted peak sound pressure level was 148.9 dB. In this study possibility of the protection of hearing with the use of earplugs or earmuffs was assessed. The measurement method for the measurements of noise parameters under hearing protection devices using an acoustical test fixture instead of testing with the participation of subjects was used. The results of these measurements allows for assessment which of two tested earplugs and two tested earmuffs sufficiently protect hearing of workers in workplaces where forging hammers are used.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Korrine Cook ◽  
Samuel R. Atcherson

The purpose of this study is to identify whether or not different materials of softball bats (wooden, aluminum, and composite) are a potential risk harm to hearing when batting players strike a 12′′ core .40 softball during slow, underhand pitch typical of recreational games. Peak sound pressure level measurements and spectral analyses were conducted for three controlled softball pitches to a batting participant using each of the different bat materials in an unused outdoor playing field with regulation distances between the pitcher’s mound and batter’s box. The results revealed that highest recorded peak sound pressure level was recorded from the aluminum (124.6 dBC) bat followed by the composite (121.2 dBC) and wooden (120.0 dBC) bats. Spectral analysis revealed composite and wooden bats with similar broadly distributed amplitude-frequency response. The aluminum bat also produced a broadly distributed amplitude-frequency response, but there were also two very distinct peaks at around 1700 Hz and 2260 Hz above the noise floor that produced its ringing (or ping) sound after being struck. Impulse (transient) sounds less than 140 dBC may permit multiple exposures, and softball bats used in a recreational slow pitch may pose little to no risk to hearing.


PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e21089 ◽  
Author(s):  
Jérôme Sueur ◽  
David Mackie ◽  
James F. C. Windmill

Jurnal Zona ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 91-106
Author(s):  
Eko Hendi Saputra ◽  
Yusni Ikhwan Siregar ◽  
Hafidawati Hafidawati

This study aims to determine the level of noise caused by flight activities at Sultan Syarif Kasim II Airport Pekanbaru, analyze noise levels that occur due to flight activities at Sultan Syarif Kasim II Airport Pekanbaru and analyze efforts to control the negative impact of airport noise on the living environment of community settlements. around Sultan Syarif Kasim II Airport Pekanbaru. This research uses field observation method, which is making direct observations at the research location by looking at the condition of the location and the suitability of the location which is the sampling point of the study (the noise level boundary at Sultan Syarif Kasim II Airport). Observations were made for 16 hours (Ls) at an interval of 06.00 - 22.00. Measurement of sound pressure level is carried out on holidays (Sunday) and weekdays (Monday), which starts on November 1, November 2, November 8, and November 9, 2020, which is carried out in residential areas around Sultan Syarif Kasim II Airport Pekanbaru, which are spread across 6 measurement points where the measurement of sound pressure level is done in duplicate, namely: Jl. Kaswari (point 1), Jl. Rawa Indah II (Point 2), Jl. Rawa Indah III (Point 3), Jl. Cinnamon (Point 4), Jl. Pahlawan Kerja gg.Pala 49 (Point 5) and Jl. Nur Asiyah (Point 6) The results of the processing of noise measurement data were made of a mapping model using surfer 11 software and to clarify the noise description at the sampling location, the map of the results of surfer 11 software processing was plotted on the airport area map.     Based on the results of measurements of noise levels around Sultan Syarif Kasim II airport, it is known that the location of point 1 (Jl. Rawa Indah II) experienced the highest noise exposure. These results indicate the location of point 1 should receive serious attention for the people who live around the airport, because the impact of airport noise has the potential to negatively affect the lives of residential communities. From the observations, it was also known that the level of noise attenuation was still low, both in terms of trees around the settlement and height, walls and fences were still not effective at reducing noise.         Based on the results of measurements of noise levels around Sultan Syarif Kasim II airport, it is known that the location of point 1 (Jl. Rawa Indah II) experienced the highest noise exposure. These results indicate that the location of point 1 should receive serious attention for the people who live around the airport, because the impact of airport noise has the potential to negatively affect the lives of residential communities. From the observations, it was also known that the level of noise attenuation was still low, both in terms of trees around the settlement and height, walls and fences were still not effective at reducing noise.         From the results of the research that has been done, several mitigation strategies can be formulated to reduce noise levels around Sultan Syarif Kasim II airport. Planting plants in accordance with the needs of controlling or reducing noise in human settlements. Tree categories suitable for planting in residential areas around the airport are: shady trees that can be planted tightly or with lots of leaves that can grow to a height of about 4 - 15 m (such as acacia, mahogany, flamboyant, ironwood or banyan trees, bamboo or cypress)


AIAA Journal ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 1107-1117 ◽  
Author(s):  
V. Lafont ◽  
F. Méry ◽  
R. Roncen ◽  
F. Simon ◽  
E. Piot

2004 ◽  
Vol 332 (4) ◽  
pp. 299-304 ◽  
Author(s):  
Mérouane Atig ◽  
Jean-Pierre Dalmont ◽  
Joël Gilbert

Author(s):  
Fabien Mery ◽  
Victor Lafont ◽  
Remi Roncen ◽  
Frank Simon ◽  
Estelle Piot

Sign in / Sign up

Export Citation Format

Share Document