scholarly journals Risk Prediction for Early Chronic Kidney Disease: Results from an Adult Health Examination Program of 19,270 Individuals

Author(s):  
Chin-Chuan Shih ◽  
Chi-Jie Lu ◽  
Gin-Den Chen ◽  
Chi-Chang Chang

Developing effective risk prediction models is a cost-effective approach to predicting complications of chronic kidney disease (CKD) and mortality rates; however, there is inadequate evidence to support screening for CKD. In this study, four data mining algorithms, including a classification and regression tree, a C4.5 decision tree, a linear discriminant analysis, and an extreme learning machine, are used to predict early CKD. The study includes datasets from 19,270 patients, provided by an adult health examination program from 32 chain clinics and three special physical examination centers, between 2015 and 2019. There were 11 independent variables, and the glomerular filtration rate (GFR) was used as the predictive variable. The C4.5 decision tree algorithm outperformed the three comparison models for predicting early CKD based on accuracy, sensitivity, specificity, and area under the curve metrics. It is, therefore, a promising method for early CKD prediction. The experimental results showed that Urine protein and creatinine ratio (UPCR), Proteinuria (PRO), Red blood cells (RBC), Glucose Fasting (GLU), Triglycerides (TG), Total Cholesterol (T-CHO), age, and gender are important risk factors. CKD care is closely related to primary care level and is recognized as a healthcare priority in national strategy. The proposed risk prediction models can support the important influence of personality and health examination representations in predicting early CKD.

PRILOZI ◽  
2016 ◽  
Vol 37 (2-3) ◽  
pp. 33-42 ◽  
Author(s):  
Marijke Stryckers ◽  
Evi V Nagler ◽  
Wim Van Biesen

AbstractAs people age, chronic kidney disease becomes more common, but it rarely leads to end-stage kidney disease. When it does, the choice between dialysis and conservative care can be daunting, as much depends on life expectancy and personal expectations of medical care. Shared decision making implies adequately informing patients about their options, and facilitating deliberation of the available information, such that decisions are tailored to the individual’s values and preferences. Accurate estimations of one’s risk of progression to end-stage kidney disease and death with or without dialysis are essential for shared decision making to be effective. Formal risk prediction models can help, provided they are externally validated, well-calibrated and discriminative; include unambiguous and measureable variables; and come with readily applicable equations or scores. Reliable, externally validated risk prediction models for progression of chronic kidney disease to end-stage kidney disease or mortality in frail elderly with or without chronic kidney disease are scant. Within this paper, we discuss a number of promising models, highlighting both the strengths and limitations physicians should understand for using them judiciously, and emphasize the need for external validation over new development for further advancing the field.


2013 ◽  
Vol 158 (8) ◽  
pp. 596 ◽  
Author(s):  
Navdeep Tangri ◽  
Georgios D. Kitsios ◽  
Lesley Ann Inker ◽  
John Griffith ◽  
David M. Naimark ◽  
...  

Author(s):  
Po-Hsiang Lin ◽  
Jer-Guang Hsieh ◽  
Hsien-Chung Yu ◽  
Jyh-Horng Jeng ◽  
Chiao-Lin Hsu ◽  
...  

Determining the target population for the screening of Barrett’s esophagus (BE), a precancerous condition of esophageal adenocarcinoma, remains a challenge in Asia. The aim of our study was to develop risk prediction models for BE using logistic regression (LR) and artificial neural network (ANN) methods. Their predictive performances were compared. We retrospectively analyzed 9646 adults aged ≥20 years undergoing upper gastrointestinal endoscopy at a health examinations center in Taiwan. Evaluated by using 10-fold cross-validation, both models exhibited good discriminative power, with comparable area under curve (AUC) for the LR and ANN models (Both AUC were 0.702). Our risk prediction models for BE were developed from individuals with or without clinical indications of upper gastrointestinal endoscopy. The models have the potential to serve as a practical tool for identifying high-risk individuals of BE among the general population for endoscopic screening.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-12
Author(s):  
Ratchainant Thammasudjarit ◽  
Punnathorn Ingsathit ◽  
Sigit Ari Saputro ◽  
Atiporn Ingsathit ◽  
Ammarin Thakkinstian

Background: Chronic kidney disease (CKD) takes huge amounts of resources for treatments. Early detection of patients by risk prediction model should be useful in identifying risk patients and providing early treatments. Objective: To compare the performance of traditional logistic regression with machine learning (ML) in predicting the risk of CKD in Thai population. Methods: This study used Thai Screening and Early Evaluation of Kidney Disease (SEEK) data. Seventeen features were firstly considered in constructing prediction models using logistic regression and 4 MLs (Random Forest, Naïve Bayes, Decision Tree, and Neural Network). Data were split into train and test data with a ratio of 70:30. Performances of the model were assessed by estimating recall, C statistics, accuracy, F1, and precision. Results: Seven out of 17 features were included in the prediction models. A logistic regression model could well discriminate CKD from non-CKD patients with the C statistics of 0.79 and 0.78 in the train and test data. The Neural Network performed best among ML followed by a Random Forest, Naïve Bayes, and a Decision Tree with the corresponding C statistics of 0.82, 0.80, 0.78, and 0.77 in training data set. Performance of these corresponding models in testing data decreased about 5%, 3%, 1%, and 2% relative to the logistic model by 2%. Conclusions: Risk prediction model of CKD constructed by the logit equation may yield better discrimination and lower tendency to get overfitting relative to ML models including the Neural Network and Random Forest.  


Sign in / Sign up

Export Citation Format

Share Document