scholarly journals Towards a Sustainable Public Transportation: Replacing the Conventional Taxis by a Hybrid Taxi Fleet in the West Bank, Palestine

Author(s):  
Fady M. A. Hassouna ◽  
Mahmoud Assad

Recently, developing sustainable public transportation systems has been highlighted by decision makers and transportation agencies, due to the development of urban areas and the related environmental problems. Implementing new vehicle technologies has been introduced as an appropriate alternative to the conventional taxis. Hybrid electrical vehicles (HEVs) have been the potential candidates for replacing the conventional taxis, since they are more eco-friendly than conventional ones and even more reliable than electric vehicles (EVs) as a mode of public transportation. In this study, current and future environmental impact assessments have been determined for the taxi fleet in the West Bank, Palestine, and the implications of using new vehicle technologies (hybrid taxis) as a replacement of the conventional taxi fleet have been investigated. In order to perform this study, firstly, the data of the number of taxis for the period of 1994–2018 have been collected and a prediction model for the future number of taxis has been developed. The expected total amounts of consumed fuels have been then estimated. Finally, the current and the future N2O and CO2, and emissions, have been estimated and the expected influences of hybrid taxis have been determined. The results of the analysis have concluded that replacing 50% of conventional taxis with a hybrid fleet could achieve 42.3% and 28% reductions in N2O and CO2, respectively, in the next 10 years. A 395% increase in CH4 could be obtained due to the higher amount of CH4 that is produced by the gasoline combustion compared to the diesel fuel, since hybrid vehicles have gasoline-based engines (GHG in terms of CO2-equivalent could be increased by 28.2%).

Author(s):  
Roberto Wolfler Calvo ◽  
Fabio de Luigi ◽  
Palle Haastrup ◽  
Vittorio Maniezzo

The increased human mobility, combined with high use of private cars, increases the load on the environment and raises issues about the quality of life. The use of private cars lends to high levels of air pollution in cities, parking problems, noise pollution, congestion, and the resulting low transfer velocity (and, thus, inefficiency in the use of public resources). Public transportation service is often incapable of effectively servicing non-urban areas, where cost-effective transportation systems cannot be set up. Based on investigations during the last years, problems related to traffic have been among those most commonly mentioned as distressing, while public transportation systems inherently are incapable of facing the different transportation needs arising in modern societies. A solution to the problem of the increased passenger and freight transportation demand could be obtained by increasing both the efficiency and the quality of public transportation systems, and by the development of systems that could provide alternative solutions in terms of flexibility and costs between the public and private ones. This is the rationale behind so-called Innovative Transport Systems (ITS) (Colorni et al., 1999), like car pooling, car sharing, dial-a-ride, park-and-ride, card car, park pricing, and road pricing, which are characterized by the exploitation of innovative organizational elements and by a large flexibility in their management (e.g., traffic restrictions and fares can vary according with the time of day).


2016 ◽  
Vol 3 (7) ◽  
pp. 160156 ◽  
Author(s):  
Laura Alessandretti ◽  
Márton Karsai ◽  
Laetitia Gauvin

Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.


Author(s):  
Jiali Zhou ◽  
Haris N. Koutsopoulos

The transmission risk of airborne diseases in public transportation systems is a concern. This paper proposes a modified Wells-Riley model for risk analysis in public transportation systems to capture the passenger flow characteristics, including spatial and temporal patterns, in the number of boarding and alighting passengers, and in number of infectors. The model is used to assess overall risk as a function of origin–destination flows, actual operations, and factors such as mask-wearing and ventilation. The model is integrated with a microscopic simulation model of subway operations (SimMETRO). Using actual data from a subway system, a case study explores the impact of different factors on transmission risk, including mask-wearing, ventilation rates, infectiousness levels of disease, and carrier rates. In general, mask-wearing and ventilation are effective under various demand levels, infectiousness levels, and carrier rates. Mask-wearing is more effective in mitigating risks. Impacts from operations and service frequency are also evaluated, emphasizing the importance of maintaining reliable, frequent operations in lowering transmission risks. Risk spatial patterns are also explored, highlighting locations of higher risk.


Author(s):  
Adriano Alessandrini ◽  
Riccardo Barbieri ◽  
Lorenzo Berzi ◽  
Fabio Cignini ◽  
Antonino Genovese ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document