scholarly journals Deep Learning-Based Object Detection, Localisation and Tracking for Smart Wheelchair Healthcare Mobility

Author(s):  
Louis Lecrosnier ◽  
Redouane Khemmar ◽  
Nicolas Ragot ◽  
Benoit Decoux ◽  
Romain Rossi ◽  
...  

This paper deals with the development of an Advanced Driver Assistance System (ADAS) for a smart electric wheelchair in order to improve the autonomy of disabled people. Our use case, built from a formal clinical study, is based on the detection, depth estimation, localization and tracking of objects in wheelchair’s indoor environment, namely: door and door handles. The aim of this work is to provide a perception layer to the wheelchair, enabling this way the detection of these keypoints in its immediate surrounding, and constructing of a short lifespan semantic map. Firstly, we present an adaptation of the YOLOv3 object detection algorithm to our use case. Then, we present our depth estimation approach using an Intel RealSense camera. Finally, as a third and last step of our approach, we present our 3D object tracking approach based on the SORT algorithm. In order to validate all the developments, we have carried out different experiments in a controlled indoor environment. Detection, distance estimation and object tracking are experimented using our own dataset, which includes doors and door handles.

2020 ◽  
Vol 17 (2) ◽  
pp. 172988142090257
Author(s):  
Dan Xiong ◽  
Huimin Lu ◽  
Qinghua Yu ◽  
Junhao Xiao ◽  
Wei Han ◽  
...  

High tracking frame rates have been achieved based on traditional tracking methods which however would fail due to drifts of the object template or model, especially when the object disappears from the camera’s field of view. To deal with it, tracking-and-detection-combination has become more and more popular for long-term unknown object tracking, whose detector almost does not drift and can regain the disappeared object when it comes back. However, for online machine learning and multiscale object detection, expensive computing resources and time are required. So it is not a good idea to combine tracking and detection sequentially like Tracking-Learning-Detection algorithm. Inspired from parallel tracking and mapping, this article proposes a framework of parallel tracking and detection for unknown object tracking. The object tracking algorithm is split into two separate tasks—tracking and detection which can be processed in two different threads, respectively. One thread is used to deal with the tracking between consecutive frames with a high processing speed. The other thread runs online learning algorithms to construct a discriminative model for object detection. Using our proposed framework, high tracking frame rates and the ability of correcting and recovering the failed tracker can be combined effectively. Furthermore, our framework provides open interfaces to integrate state-of-the-art object tracking and detection algorithms. We carry out an evaluation of several popular tracking and detection algorithms using the proposed framework. The experimental results show that different tracking and detection algorithms can be integrated and compared effectively by our proposed framework, and robust and fast long-term object tracking can be realized.


2020 ◽  
Vol 17 (2) ◽  
pp. 123-127
Author(s):  
I. G. Matveev ◽  

The paper proposes an approach to object tracking for public street environments using dimensional based object detection algorithm. Besides the tracking functionality, the proposed algorithm improves the detection accuracy of the dimensional based object detection algorithm. The proposed tracking approach uses detection information obtained from multiple cameras which are structured as a mesh network. Conducted experiments performed in a real-world environment have shown 10 to 40 percent higher detection accuracy that has proved the proposed concept. The tracking algorithm requires negligible computational resources that make the algorithm especially applicable for low-performance Internet of things infrastructure.


2021 ◽  
Author(s):  
Armin Masoumian ◽  
David G.F. Marei ◽  
Saddam Abdulwahab ◽  
Julián Cristiano ◽  
Domenec Puig ◽  
...  

Determining the distance between the objects in a scene and the camera sensor from 2D images is feasible by estimating depth images using stereo cameras or 3D cameras. The outcome of depth estimation is relative distances that can be used to calculate absolute distances to be applicable in reality. However, distance estimation is very challenging using 2D monocular cameras. This paper presents a deep learning framework that consists of two deep networks for depth estimation and object detection using a single image. Firstly, objects in the scene are detected and localized using the You Only Look Once (YOLOv5) network. In parallel, the estimated depth image is computed using a deep autoencoder network to detect the relative distances. The proposed object detection based YOLO was trained using a supervised learning technique, in turn, the network of depth estimation was self-supervised training. The presented distance estimation framework was evaluated on real images of outdoor scenes. The achieved results show that the proposed framework is promising and it yields an accuracy of 96% with RMSE of 0.203 of the correct absolute distance.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 532 ◽  
Author(s):  
Antoine Mauri ◽  
Redouane Khemmar ◽  
Benoit Decoux ◽  
Nicolas Ragot ◽  
Romain Rossi ◽  
...  

In core computer vision tasks, we have witnessed significant advances in object detection, localisation and tracking. However, there are currently no methods to detect, localize and track objects in road environments, and taking into account real-time constraints. In this paper, our objective is to develop a deep learning multi object detection and tracking technique applied to road smart mobility. Firstly, we propose an effective detector-based on YOLOv3 which we adapt to our context. Subsequently, to localize successfully the detected objects, we put forward an adaptive method aiming to extract 3D information, i.e., depth maps. To do so, a comparative study is carried out taking into account two approaches: Monodepth2 for monocular vision and MADNEt for stereoscopic vision. These approaches are then evaluated over datasets containing depth information in order to discern the best solution that performs better in real-time conditions. Object tracking is necessary in order to mitigate the risks of collisions. Unlike traditional tracking approaches which require target initialization beforehand, our approach consists of using information from object detection and distance estimation to initialize targets and to track them later. Expressly, we propose here to improve SORT approach for 3D object tracking. We introduce an extended Kalman filter to better estimate the position of objects. Extensive experiments carried out on KITTI dataset prove that our proposal outperforms state-of-the-art approches.


2019 ◽  
Vol 3 (1) ◽  
pp. 231-238
Author(s):  
Hendra Hermawan

Development a visual-guided autonomous arm robot for general working application in service workshop require some preliminary works/research to ensure the quality and reliability of robot mainly on object detection/recognition and object pose estimation. We have experimented robot vision for this purpose using Raspberry Pi and single web camera supported by Python-OpenCV programming using color-base and contour-base detection algorithm for object recognition and Triangulation similarity method for object pose estimation. Experiment results showed that color-base detection is 22% faster than contour-based object detection for colorful tooling object without disturbance same color from environment. However, contour-base detection is more effective for target working object detection than color-base. Light illumination and disturbance from environment should be managed for successful object detection. Triangulation linearity method is simple and fastest method for tooling object position estimation when tooling object is a known sized object. Experiment result showed error only 2% for distance estimation using this method compared with actual.


Author(s):  
Samuel Humphries ◽  
Trevor Parker ◽  
Bryan Jonas ◽  
Bryan Adams ◽  
Nicholas J Clark

Quick identification of building and roads is critical for execution of tactical US military operations in an urban environment. To this end, a gridded, referenced, satellite images of an objective, often referred to as a gridded reference graphic or GRG, has become a standard product developed during intelligence preparation of the environment. At present, operational units identify key infrastructure by hand through the work of individual intelligence officers. Recent advances in Convolutional Neural Networks, however, allows for this process to be streamlined through the use of object detection algorithms. In this paper, we describe an object detection algorithm designed to quickly identify and label both buildings and road intersections present in an image. Our work leverages both the U-Net architecture as well the SpaceNet data corpus to produce an algorithm that accurately identifies a large breadth of buildings and different types of roads. In addition to predicting buildings and roads, our model numerically labels each building by means of a contour finding algorithm. Most importantly, the dual U-Net model is capable of predicting buildings and roads on a diverse set of test images and using these predictions to produce clean GRGs.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2894
Author(s):  
Minh-Quan Dao ◽  
Vincent Frémont

Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an object detector and a data association algorithm which establishes track-to-detection correspondence. While 3D object detection has been actively researched, association algorithms for 3D MOT has settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the Hungarian algorithm. In this paper, we adapt a two-stage data association method which was successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes validation set and 0.365 AMOTA (at level 2) in Waymo test set.


Sign in / Sign up

Export Citation Format

Share Document