scholarly journals Environmental Regulation and Exports: Evidence from the Comprehensive Air Pollution Policy in China

Author(s):  
Hong Chen ◽  
Yang Xu

The impact of environmental regulation has been an important topic. Based on the Chinese Custom Database and China City Statistical Yearbook, this paper investigates the effect of environmental regulation on export values and explores potential mechanisms and heterogeneous effects. Taking advantage of China’s first comprehensive air pollution prevention and control plan, the Air Pollution Control in Key Zones policy, as a quasi-natural experiment, we employ the difference-in-differences method to examine the causal relationship between environmental regulation and exports. We find the statistically significant and negative effect of environmental regulation on exports at the city level. Moreover, we find that the potential mechanism is the change in export values caused by firm entry and exit, especially by exiters, rather than the change in the number of exporting firms in the city caused by firm entry and exit. In addition, we find the heterogeneous effects of environmental regulation based on the differences of environmental policy across cities and the Broad Economic Categories classification.

2014 ◽  
Vol 19 (1) ◽  
pp. 67-89
Author(s):  
Marjan Nasir

This study focuses on the impact of trade liberalization on firm entry and exit in Punjab’s export manufacturing sector over the decade 2001–10. As far as the province’s export industries are concerned, real exchange rate depreciation attracts new firms but also leads weaker firms to exit. A reduction in local or international tariffs, however, has no significant impact on firm entry or exit.


2017 ◽  
Vol 22 (1) ◽  
pp. 19-36
Author(s):  
Marjan Nasir

The literature on industrial organization shows that geographic and industrial concentration affects firm turnover. This study conducts a firm-level analysis to gauge the impact of agglomeration on firm entry and exit in domestic industries in Punjab, Pakistan. It also illustrates how certain industries exist in clusters while others are highly dispersed. The results suggest that higher rates of firm entry and exit are associated with highly agglomerated industries.


2001 ◽  
Vol 43 (5) ◽  
pp. 239-244 ◽  
Author(s):  
J. Li

Oil spills in industrialized cities pose a significant threat to their urban water environment. The largest city in Canada, the city of Toronto, has an average 300–500 oil spills per year with an average total volume of about 160,000 L/year. About 45% of the spills was eventually cleaned up. Given the enormous amount of remaining oil entering into the fragile urban ecosystem, it is important to develop an effective pollution prevention and control plan for the city. A Geographic Information System (GIS) planning model has been developed to characterize oil spills and determine preventive and control measures available in the city. A database of oil spill records from 1988 to 1997 was compiled and geo-referenced. Attributes to each record such as spill volume, oil type, location, road type, sector, source, cleanup percentage, and environmental impacts were created. GIS layers of woodlots, wetlands, watercourses, Environmental Sensitive Areas, and Areas of Natural and Scientific Interest were obtained from the local Conservation Authority. By overlaying the spill characteristics with the GIS layers, evaluation of preventive and control solutions close to these environmental features was conducted. It was found that employee training and preventive maintenance should be improved as the principal cause of spills was attributed to human errors and equipment failure. Additionally, the cost of using oil separators at strategic spill locations was found to be $1.4 million. The GIS model provides an efficient planning tool for urban oil spill management. Additionally, the graphical capability of GIS allows users to integrate environmental features and spill characteristics in the management analysis.


2016 ◽  
Vol 2 (2) ◽  
pp. 162-191 ◽  
Author(s):  
Ichiro Iwasaki ◽  
Mathilde Maurel ◽  
Bogdan Meunier

2021 ◽  
Author(s):  
Ivo Suter ◽  
Lukas Emmenegger ◽  
Dominik Brunner

<p>Reducing air pollution, which is the world's largest single environmental health risk, demands better-informed air quality policies. Consequently, multi-scale air quality models are being developed with the goal to resolve cities. One of the major challenges in such model systems is to accurately represent all large- and regional-scale processes that may critically determine the background concentration levels over a given city. This is particularly true for longer-lived species such as aerosols, for which background levels often dominate the concentration levels, even within the city. Furthermore, the heterogeneous local emissions, and complex dispersion in the city have to be considered carefully.</p><p>In this study, the impact of processes across a wide range of scales on background concentrations over Switzerland and the city of Zurich was modelled by performing one year of nested European and Swiss national COSMO-ART simulations to obtain adequate boundary conditions for gas-phase chemical, aerosol and meteorological conditions for city-resolving simulations. The regional climate chemistry model COSMO-ART (Vogel et al. 2009) was used in a 1-way coupled mode. The outer, European, domain, which was driven by chemical boundary conditions from the global MOZART model, had a 6.6 km horizontal resolution and the inner, Swiss, domain one of 2.2 km. For the city scale, a catalogue of more than 1000 mesoscale flow patterns with 100 m resolution was created with the model GRAMM, based on a discrete set of atmospheric stabilities, wind speeds and directions, accounting for the influence of land-use and topography. Finally, the flow around buildings was solved with the CFD model GRAL forced at the boundaries by GRAMM. Subsequently, Lagrangian dispersion simulations for a set of air pollutants and emission sectors (traffic, industry, ...) based on extremely detailed building and emission data was performed in GRAL. The result of this nested procedure is a library of 3-dimensional air pollution maps representative of hourly situations in Zurich (Berchet et al. 2017). From these pre-computed situations, time-series and concentration maps can be obtained by selecting situations according to observed or modelled meteorological conditions.</p><p>The results were compared to measurements from air quality monitoring network stations. Modelled concentrations of NO<sub>x</sub> and PM compared well to measurements across multiple locations, provided background conditions were considered carefully. The nested multi-scale modelling system COSMO-ART/GRAMM/GRAL can adequately reproduce local air quality and help understanding the relative contributions of local versus distant emissions, as well as fill the space between precise point measurements from monitoring sites. This information is useful for research, policy-making, and epidemiological studies particularly under the assumption that exceedingly high concentrations become more and more localised phenomenon in the future.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 742 ◽  
Author(s):  
Ewa Brągoszewska ◽  
Magdalena Bogacka ◽  
Krzysztof Pikoń

Air pollution, a by-product of economic growth, generates an enormous environmental cost in Poland. The issue of healthy living spaces and indoor air quality (IAQ) is a global concern because people spend approximately 90% of their time indoors. An increasingly popular method to improve IAQ is to use air purifiers (APs). Indoor air is often polluted by bioaerosols (e.g., viruses, bacteria, fungi), which are a major concern for public health. This work presents research on culturable bacterial aerosol (CBA) samples collected from dwellings with or without active APs during the 2019 summer season. The CBA samples were collected using a six-stage Andersen cascade impactor (ACI). The CBA concentrations were expressed as Colony Forming Units (CFU) per cubic metre of air. The average concentration of CBA in dwellings when the AP was active was 450–570 CFU/m3, whereas the average concentration when the AP was not active was 920–1000 CFU/m3. IAQ, when the APs were active, was on average almost 50% better than in cases where there were no procedures to decrease the concentration of air pollutants. Moreover, the obtained results of the particle size distribution (PSD) of CBA indicate that the use of APs reduced the proportion of the respirable fraction (the particles < 3.3 µm) by about 16%. Life cycle assessment (LCA) was used to assess the ecological cost of air purification. Our conceptual approach addresses the impact of indoor air pollution on human health and estimates the ecological cost of APs and air pollution prevention policies.


Sign in / Sign up

Export Citation Format

Share Document