scholarly journals DEM Based Study on Shielded Astronomical Solar Radiation and Possible Sunshine Duration under Terrain Influences on Mars by Using Spectral Methods

2021 ◽  
Vol 10 (2) ◽  
pp. 56
Author(s):  
Siwei Lin ◽  
Nan Chen

Solar radiation may be shielded by the terrain relief before reaching the Martian surface, especially over some rugged terrains. Yet, to date, no comprehensive studies on the spatial structure of shielded astronomical solar radiation (SASR) and the possible sunshine duration (PSD) on Mars have been conducted by previous researchers. Previous studies generally ignored the influences of the terrain on the SASR and PSD, which resulted in a corresponding unexplored field on SASR. The purpose of this paper is to study the Martian spatial-temporal structure of SASR and the PSD under terrain influences. In this paper, the theory of Earth’s SASR, the previous Martian SASR model and the theory of planetary science were combined to propose the SASR model that can be applied to Mars. Then, with the spectrum method theory of geography, we defined two new concepts of spectrums to explore the spatial-temporal distribution of SASR and PSD in different Martian landforms. We found SASR and PSD on Mars were significantly influenced by terrain relief and latitude and showed sufficient regularity, which can be concluded as a gradual attenuation with terrain relief and a regularity of latitude anisotropy. The latitude anisotropy feature is a manifestation of the terrain shielding effect. With the latitude varying, SASR and PSD at different temporal scale generally showed different features with those of Earth, which may be attributed to the imbalanced seasons caused by Martian moving orbits and velocity. Compared to PSD, SASR showed more regular variation under terrain relief and was more influenced by the terrain relief which revealed that SASR is more sensitive to terrain relief than PSD. Additionally, the critical area is a quantitative index to reflect the stable spatial structure of SASR and PSD in different landforms and may be viewed as the minimum test region of sample areas. The corresponding result of the experiments herein indicated that either spectrum can effectively depict the spatial-temporal distribution of SASR and PSD on Mars under terrain relief and deepen the understanding of the variation of SASR and PSD influences by terrain. The critical area of either spectrum can be employed to explore and determine the stable spatial structure of SASR and PSD in different landforms. The proposed Martian SASR model and the new spectral method theory shed new light on revealing the spatial-temporal structure of SASR and PSD under terrain influences on Mars.

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 383
Author(s):  
Dawid Szatten ◽  
Mirosław Więcław

Global solar radiation is an important atmospheric stimulus affecting the human body and has been used in heliotherapy for years. In addition to environmental factors, the effectiveness of global solar radiation is increasingly influenced by human activity. This research was based on the use of heliographic and actinometric data (1996–2015) and the model distribution of global solar radiation to determine the possibility of heliotherapy with the example of two health resorts: Cieplice and Kołobrzeg (Poland). The solar features of health resorts (sunshine duration and global solar radiation) were characterized, and they were correlated with the spatial distribution of global solar radiation data obtained with the use of remote sensing techniques (System for Automated Geoscientific Analyzes-SAGA), including COoRdination and INformation on the Environment (CORINE) land cover (CLC) data. Using the maximum entropy model (MaxEnt), a qualitative and quantitative relationship between morphometric parameters and solar climate features was demonstrated for individual land cover types. Studies have shown that the period of late spring and summer, due to the climate’s solar features, is advisable for the use of heliotherapy. The human activity that determines the land cover is the main element influencing the spatial differentiation of the possibilities of using this form of health treatment. It also affects topographic indicators shown as significant in the MaxEnt predictive model. In general, areas with high openness were shown as predisposed for health treatment using global solar radiation, which is not consistent with areas commonly used for heliotherapy. The conducted research has shown the need for an interdisciplinary approach to the issue of heliotherapy, which will contribute to the optimization of the use of this form of health treatment from the perspective of climate change and human pressure.


2008 ◽  
Vol 148 (3) ◽  
pp. 466-480 ◽  
Author(s):  
D.G. Miller ◽  
M. Rivington ◽  
K.B. Matthews ◽  
K. Buchan ◽  
G. Bellocchi

2019 ◽  
Vol 67 (3) ◽  
pp. 280-288 ◽  
Author(s):  
Jitka Kofroňová ◽  
Miroslav Tesař ◽  
Václav Šípek

Abstract Longwave radiation, as part of the radiation balance, is one of the factors needed to estimate potential evapotranspiration (PET). Since the longwave radiation balance is rarely measured, many computational methods have been designed. In this study, we report on the difference between the observed longwave radiation balance and modelling results obtained using the two main procedures outlined in FAO24 (relying on the measured sunshine duration) and FAO56 (based on the measured solar radiation) manuals. The performance of these equations was evaluated in the April–October period over eight years at the Liz experimental catchment and grass surface in the Bohemian Forest (Czech Republic). The coefficients of both methods, which describe the influence of cloudiness factor and atmospheric emissivity of the air, were calibrated. The Penman-Monteith method was used to calculate the PET. The use of default coefficient values gave errors of 40–100 mm (FAO56) and 0–20 mm (FAO24) for the seasonal PET estimates (the PET was usually overestimated). Parameter calibration decreased the FAO56 error to less than 20 mm per season (FAO24 remained unaffected by the calibration). The FAO56 approach with calibrated coefficients proved to be more suitable for estimation of the longwave radiation balance.


2019 ◽  
Vol 28 (3) ◽  
pp. 487-494 ◽  
Author(s):  
O. Mishchenko

The article presents the results of scientific developments concerning the structural organization of sacred landscapes. The methodological basis of the study is the concept of constructive-geographic analysis, which is based on the approaches of the natural and the humanitarian sciences. The system approach to the study of sacred landscapes as a holistic organized territorial structure and a set of methods is used in this work, in particular: structural and logical generalization and system analysis, comparative and geographical, historical and geographical. The author considers the significance of the notion of sacral landscape as being broader than religion per se, and considers it a natural, natural-anthropogenic and anthropogenic system associated with certain symbols of life, myths, significant events, and , indeed ,religious feelings that are of great importance to a person or group of people and requires special respect and protection. The structural organization of all sacred landscapes is characterized  by their properties and spatial structure and is closely connected with their social and functional purpose. As a result, such territorial systems can be divided into: confessional, taphal, active, abnormal. The sacred landscape is characterized by polystructurality, that is, the presence of spatial, temporal and morphological structure. In the spatial structure of the sacral landscape, the following components can be distinguished: the sacred object, anthropogenic and technogenic component, the landscape structure and a person with his/   her spiritual experience. In addition, such a structure has a hierarchical construction, where individual, local, regional, national and global levels can be distinguished. This article presents the peculiarities of the temporal structure of sacral landscapes and outlines the external, internal, and the functioning time. Particular attention is paid to the characteristic of internal time, where one can distinguish the following phases of development: the formation of a natural, natural-anthropogenic or anthropogenic landscape; the creation of a spiritual component; loss of sacred human perception of a natural, natural-anthropogenic or anthropogenic landscape; the disappearance of the natural or natural- anthropogenic landscape. Taking into account the morphological structure of the sacred landscape, it is substantiated that religious objects serving as markers of sacred landscapes cannot correspond to one or another morphological unit of the landscape, that is, completely repeat its outlines and boundaries. However, there is a correlation between the type of landscape and the features of the sacred objects that were formed there.


2016 ◽  
Author(s):  
Rosa Delia García ◽  
Emilio Cuevas ◽  
Omaira Elena García ◽  
Ramon Ramón ◽  
Pedro Miguel Romero-Campos ◽  
...  

Abstract. A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on July 17, 2014. We compare global solar radiation (GSR) records measured with a CM-21 pyranometer Kipp & Zonen, taken in the framework of the Baseline Surface Radiation Network, with those measured with a Multifilter Rotating Shadowband Radiometer (MFRSR), and a bimetallic pyranometer (PYR), and GSR estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given the GSR BSRN records are subject of strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the intercomparison study. We obtain an overall root mean square error (RMSE) of ~0.9 MJm2 (4 %) for GSR PYR and GSR MFRSR, 1.9 MJm2 (7 %) and 1.2 MJm2 (5 %) for GSR CS and GSR CSD, respectively. Factors such as temperature, fraction of the clear sky, relative humidity and the solar zenith angle have shown to moderately affect the GSR observations. As application of the methodology developed in this work, we have re-evaluated the GSR time series between 1977 and 1991 obtained with two PYRs at IZO. By comparing with coincident GSR estimates from SD observations, we probe the high consistency of those measurements and their temporal stability. These results demonstrate that 1) the continuous-basis intercomparison of different GSR techniques offers important diagnostics for identifying inconsistencies between GSR data records, and 2) the GSR measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSR time series and complete worldwide distributed GSR data. The intercomparison and quality assessment of these different techniques have allowed to obtain a complete and consistent long-term global solar radiation series (1977–2015) at Izaña.


2020 ◽  
Vol 50 (1) ◽  
pp. 12-23
Author(s):  
Elias da Costa ARAUJO ◽  
Lucas Pereira MARTINS ◽  
Marcelo DUARTE ◽  
Gisele Garcia AZEVEDO

ABSTRACT Rainfall is one of the most influential factors driving insect seasonality in the Amazon region. However, few studies have analyzed the temporal dynamics of fruit-feeding butterflies in the Brazilian Amazon, specially in its eastern portion. Here, we evaluated the diversity patterns and temporal distribution of fruit-feeding butterflies in a remnant of eastern Amazon forest in the Baixada Maranhense, northeastern Brazil. Specifically, we tested whether fruit-feeding butterflies are temporally structured and whether rainfall influences species richness and abundance. Butterflies were collected with baited traps in both the rainy and dry seasons for two consecutive years. In total, we captured 493 butterflies belonging to 28 species, 15 genera and eight tribes. Three species comprised about half of the overall abundance, and Satyrinae was the most representative subfamily. The fruit-feeding butterfly assemblage showed a strong temporal structure during the second year of sampling, but not during the first year. Species composition and richness did not differ between rainy and dry seasons, and neither abundance nor richness was influenced by rainfall. Our results indicate that seasonality is not a strong environmental filter in this region, and that other biotic and abiotic factors are probably driving the community structure. The predominance of palms in the Baixada Maranhense, which are used as host plants by larvae of several lepidopteran species (specially satyrines) and are available year-round, might have contributed to the observed patterns of temporal diversity.


Sign in / Sign up

Export Citation Format

Share Document