scholarly journals Volumetric Representation and Sphere Packing of Indoor Space for Three-Dimensional Room Segmentation

2021 ◽  
Vol 10 (11) ◽  
pp. 739
Author(s):  
Fan Yang ◽  
Mingliang Che ◽  
Xinkai Zuo ◽  
Lin Li ◽  
Jiyi Zhang ◽  
...  

Room segmentation is a basic task for the semantic enrichment of point clouds. Recent studies have mainly projected single-floor point clouds to binary images to realize two-dimensional room segmentation. However, these methods have difficulty solving semantic segmentation problems in complex 3D indoor environments, including cross-floor spaces and rooms inside rooms; this is the bottleneck of indoor 3D modeling for non-Manhattan worlds. To make full use of the abundant geometric and spatial structure information in 3D space, a novel 3D room segmentation method that realizes room segmentation directly in 3D space is proposed in this study. The method utilizes volumetric representation based on a VDB data structure and packs an indoor space with a set of compact spheres to form rooms as separated connected components. Experimental results on different types of indoor point cloud datasets demonstrate the efficiency of the proposed method.

2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Jiafeng Shi ◽  
Jie Shen ◽  
Zdeněk Stachoň ◽  
Yawei Chen

<p><strong>Abstract.</strong> With the increasing number of large buildings and more frequent indoor activities, indoor location-based service has expanded. Due to the complicated internal passages of large public buildings and the three-dimensional interlacing, it is difficult for users to quickly reach the destination, the demand of indoor paths visualization increases. Isikdag (2013), Zhang Shaoping (2017), Huang Kejia (2018) provided navigation services for users based on path planning algorithm. In terms of indoor path visualization, Nossum (2011) proposed a “Tubes” map design method, which superimposed the channel information of different floors on the same plane by simplifying the indoor corridor and the room. Lorenz et al (2013) focused on map perspective (2D/3D) and landmarks, developed and investigated cartographic methods for effective route guidance in indoor environments. Holscher et al (2007) emphasized using the landmark objects at the important decision points of the route in indoor map design. The existing studies mainly focused on two-dimensional plane to visualize the indoor path, lacking the analysis of three-dimensional connectivity in indoor space, which makes the intuitiveness and interactivity of path visualization greatly compromised. Therefore, it is difficult to satisfy the wayfinding requirements of the indoor multi-layer continuous space. In order to solve this problem, this paper aims to study the characteristics of the indoor environment and propose a path visualization method. The following questions are addressed in this study: 1) What are the key characteristics of the indoor environment compared to the outdoor space? 2) How to visualize the indoor paths to satisfy the users’ wayfinding needs?</p>


Author(s):  
F. Tsai ◽  
T.-S. Wu ◽  
I.-C. Lee ◽  
H. Chang ◽  
A. Y. S. Su

This paper presents a data acquisition system consisting of multiple RGB-D sensors and digital single-lens reflex (DSLR) cameras. A systematic data processing procedure for integrating these two kinds of devices to generate three-dimensional point clouds of indoor environments is also developed and described. In the developed system, DSLR cameras are used to bridge the Kinects and provide a more accurate ray intersection condition, which takes advantage of the higher resolution and image quality of the DSLR cameras. Structure from Motion (SFM) reconstruction is used to link and merge multiple Kinect point clouds and dense point clouds (from DSLR color images) to generate initial integrated point clouds. Then, bundle adjustment is used to resolve the exterior orientation (EO) of all images. Those exterior orientations are used as the initial values to combine these point clouds at each frame into the same coordinate system using Helmert (seven-parameter) transformation. Experimental results demonstrate that the design of the data acquisition system and the data processing procedure can generate dense and fully colored point clouds of indoor environments successfully even in featureless areas. The accuracy of the generated point clouds were evaluated by comparing the widths and heights of identified objects as well as coordinates of pre-set independent check points against in situ measurements. Based on the generated point clouds, complete and accurate three-dimensional models of indoor environments can be constructed effectively.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5765 ◽  
Author(s):  
Seiya Ito ◽  
Naoshi Kaneko ◽  
Kazuhiko Sumi

This paper proposes a novel 3D representation, namely, a latent 3D volume, for joint depth estimation and semantic segmentation. Most previous studies encoded an input scene (typically given as a 2D image) into a set of feature vectors arranged over a 2D plane. However, considering the real world is three-dimensional, this 2D arrangement reduces one dimension and may limit the capacity of feature representation. In contrast, we examine the idea of arranging the feature vectors in 3D space rather than in a 2D plane. We refer to this 3D volumetric arrangement as a latent 3D volume. We will show that the latent 3D volume is beneficial to the tasks of depth estimation and semantic segmentation because these tasks require an understanding of the 3D structure of the scene. Our network first constructs an initial 3D volume using image features and then generates latent 3D volume by passing the initial 3D volume through several 3D convolutional layers. We apply depth regression and semantic segmentation by projecting the latent 3D volume onto a 2D plane. The evaluation results show that our method outperforms previous approaches on the NYU Depth v2 dataset.


2019 ◽  
Vol 8 (5) ◽  
pp. 213 ◽  
Author(s):  
Florent Poux ◽  
Roland Billen

Automation in point cloud data processing is central in knowledge discovery within decision-making systems. The definition of relevant features is often key for segmentation and classification, with automated workflows presenting the main challenges. In this paper, we propose a voxel-based feature engineering that better characterize point clusters and provide strong support to supervised or unsupervised classification. We provide different feature generalization levels to permit interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic representation of point clouds in relevant clusters. Finally, we benchmark the approach against novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to state-of-the-art deep learning.


Author(s):  
Jayren Kadamen ◽  
George Sithole

Three dimensional models obtained from imagery have an arbitrary scale and therefore have to be scaled. Automatically scaling these models requires the detection of objects in these models which can be computationally intensive. Real-time object detection may pose problems for applications such as indoor navigation. This investigation poses the idea that relational cues, specifically height ratios, within indoor environments may offer an easier means to obtain scales for models created using imagery. The investigation aimed to show two things, (a) that the size of objects, especially the height off ground is consistent within an environment, and (b) that based on this consistency, objects can be identified and their general size used to scale a model. To test the idea a hypothesis is first tested on a terrestrial lidar scan of an indoor environment. Later as a proof of concept the same test is applied to a model created using imagery. The most notable finding was that the detection of objects can be more readily done by studying the ratio between the dimensions of objects that have their dimensions defined by human physiology. For example the dimensions of desks and chairs are related to the height of an average person. In the test, the difference between generalised and actual dimensions of objects were assessed. A maximum difference of 3.96% (2.93&lt;i&gt;cm&lt;/i&gt;) was observed from automated scaling. By analysing the ratio between the heights (distance from the floor) of the tops of objects in a room, identification was also achieved.


Author(s):  
M. Soilán ◽  
A. Nóvoa ◽  
A. Sánchez-Rodríguez ◽  
B. Riveiro ◽  
P. Arias

Abstract. Transport infrastructure monitoring has lately attracted increasing attention due to the rise in extreme natural hazards posed by climate change. Mobile Mapping Systems gather information regarding the state of the assets, which allows for more efficient decision-making. These systems provide information in the form of three-dimensional point clouds. Point cloud analysis through deep learning has emerged as a focal research area due to its wide application in areas such as autonomous driving. This paper aims to apply the pioneering PointNet, and the current state-of-the-art KPConv architectures to perform scene segmentation of railway tunnels, in order to validate their employability over heuristic classification methods. The approach is to perform a multi-class classification that classifies the most relevant components of tunnels: ground, lining, wiring and rails. Both architectures are trained from scratch with heuristically classified point clouds of two different railway tunnels. Results show that, while both architectures are suitable for the proposed classification task, KPConv outperforms PointNet with F1-scores over 97% for ground, lining and wiring classes, and over 90% for rails. In addition, KPConv is tested using transfer learning, which gives F1-scores slightly lower than for the model training from scratch but shows better generalization capabilities.


Author(s):  
Y. Xu ◽  
Z. Sun ◽  
R. Boerner ◽  
T. Koch ◽  
L. Hoegner ◽  
...  

In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.


Author(s):  
Jayren Kadamen ◽  
George Sithole

Three dimensional models obtained from imagery have an arbitrary scale and therefore have to be scaled. Automatically scaling these models requires the detection of objects in these models which can be computationally intensive. Real-time object detection may pose problems for applications such as indoor navigation. This investigation poses the idea that relational cues, specifically height ratios, within indoor environments may offer an easier means to obtain scales for models created using imagery. The investigation aimed to show two things, (a) that the size of objects, especially the height off ground is consistent within an environment, and (b) that based on this consistency, objects can be identified and their general size used to scale a model. To test the idea a hypothesis is first tested on a terrestrial lidar scan of an indoor environment. Later as a proof of concept the same test is applied to a model created using imagery. The most notable finding was that the detection of objects can be more readily done by studying the ratio between the dimensions of objects that have their dimensions defined by human physiology. For example the dimensions of desks and chairs are related to the height of an average person. In the test, the difference between generalised and actual dimensions of objects were assessed. A maximum difference of 3.96% (2.93<i>cm</i>) was observed from automated scaling. By analysing the ratio between the heights (distance from the floor) of the tops of objects in a room, identification was also achieved.


Author(s):  
H. Takahashi ◽  
H. Date ◽  
S. Kanai ◽  
K. Yasutake

Abstract. Laser scanning technology is useful to create accurate three-dimensional models of indoor environments for applications such as maintenance, inspection, renovation, and simulations. In this paper, a detection method of indoor attached equipment such as windows, lightings, and fire alarms, from TLS point clouds, is proposed. In order to make the method robust against to the lack of points of equipment surface, a footprint of the equipment is used for detection, because the entire or a part of the footprint boundary shapes explicitly appear as the boundary of base surfaces, i.e. walls for windows, and ceilings for lightings and fire alarms. In the method, first, base surface regions are extracted from given TLS point clouds of indoor environments. Then, footprint boundary points are detected from the region boundary points. Finally, target equipment is detected by fitting or voting using given target footprint shapes. The features of our method are footprint boundary point extraction considering occlusions, shape fitting with adaptive parameters based on point intervals, and robust shape detection by voting from multiple footprint boundary candidates. The effectiveness of the proposed method is evaluated using TLS point clouds.


Author(s):  
J. Yan ◽  
N. Grasso ◽  
S. Zlatanova ◽  
R. C. Braggaar ◽  
D. B. Marx

Three-dimensional modelling plays a vital role in indoor 3D tracking, navigation, guidance and emergency evacuation. Reconstruction of indoor 3D models is still problematic, in part, because indoor spaces provide challenges less-documented than their outdoor counterparts. Challenges include obstacles curtailing image and point cloud capture, restricted accessibility and a wide array of indoor objects, each with unique semantics. Reconstruction of indoor environments can be achieved through a photogrammetric approach, e.g. by using image frames, aligned using recurring corresponding image points (CIP) to build coloured point clouds. Our experiments were conducted by flying a QUAV in three indoor environments and later reconstructing 3D models which were analysed under different conditions. Point clouds and meshes were created using Agisoft PhotoScan Professional. We concentrated on flight paths from two vantage points: 1) safety and security while flying indoors and 2) data collection needed for reconstruction of 3D models. We surmised that the main challenges in providing safe flight paths are related to the physical configuration of indoor environments, privacy issues, the presence of people and light conditions. We observed that the quality of recorded video used for 3D reconstruction has a high dependency on surface materials, wall textures and object types being reconstructed. Our results show that 3D indoor reconstruction predicated on video capture using a QUAV is indeed feasible, but close attention should be paid to flight paths and conditions ultimately influencing the quality of 3D models. Moreover, it should be decided in advance which objects need to be reconstructed, e.g. bare rooms or detailed furniture.


Sign in / Sign up

Export Citation Format

Share Document