scholarly journals Improving Road Surface Area Extraction via Semantic Segmentation with Conditional Generative Learning for Deep Inpainting Operations

2022 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Calimanut-Ionut Cira ◽  
Martin Kada ◽  
Miguel-Ángel Manso-Callejo ◽  
Ramón Alcarria ◽  
Borja Bordel Bordel Sanchez

The road surface area extraction task is generally carried out via semantic segmentation over remotely-sensed imagery. However, this supervised learning task is often costly as it requires remote sensing images labelled at the pixel level, and the results are not always satisfactory (presence of discontinuities, overlooked connection points, or isolated road segments). On the other hand, unsupervised learning does not require labelled data and can be employed for post-processing the geometries of geospatial objects extracted via semantic segmentation. In this work, we implement a conditional Generative Adversarial Network to reconstruct road geometries via deep inpainting procedures on a new dataset containing unlabelled road samples from challenging areas present in official cartographic support from Spain. The goal is to improve the initial road representations obtained with semantic segmentation models via generative learning. The performance of the model was evaluated on unseen data by conducting a metrical comparison where a maximum Intersection over Union (IoU) score improvement of 1.3% was observed when compared to the initial semantic segmentation result. Next, we evaluated the appropriateness of applying unsupervised generative learning using a qualitative perceptual validation to identify the strengths and weaknesses of the proposed method in very complex scenarios and gain a better intuition of the model’s behaviour when performing large-scale post-processing with generative learning and deep inpainting procedures and observed important improvements in the generated data.

Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 79
Author(s):  
Calimanut-Ionut Cira ◽  
Miguel-Ángel Manso-Callejo ◽  
Ramón Alcarria ◽  
Teresa Fernández Pareja ◽  
Borja Bordel Sánchez ◽  
...  

Remote sensing experts have been actively using deep neural networks to solve extraction tasks in high-resolution aerial imagery by means of supervised semantic segmentation operations. However, the extraction operation is imperfect, due to the complex nature of geospatial objects, limitations of sensing resolution, or occlusions present in the scenes. In this work, we tackle the challenge of postprocessing semantic segmentation predictions of road surface areas obtained with a state-of-the-art segmentation model and present a technique based on generative learning and image-to-image translations concepts to improve these initial segmentation predictions. The proposed model is a conditional Generative Adversarial Network based on Pix2pix, heavily modified for computational efficiency (92.4% decrease in the number of parameters in the generator network and 61.3% decrease in the discriminator network). The model is trained to learn the distribution of the road network present in official cartography, using a novel dataset containing 6784 tiles of 256 × 256 pixels in size, covering representative areas of Spain. Afterwards, we conduct a metrical comparison using the Intersection over Union (IoU) score (measuring the ratio between the overlap and union areas) on a novel testing set containing 1696 tiles (unseen during training) and observe a maximum increase of 11.6% in the IoU score (from 0.6726 to 0.7515). In the end, we conduct a qualitative comparison to visually assess the effectiveness of the technique and observe great improvements with respect to the initial semantic segmentation predictions.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 64381-64392
Author(s):  
Abolfazl Abdollahi ◽  
Biswajeet Pradhan ◽  
Gaurav Sharma ◽  
Khairul Nizam Abdul Maulud ◽  
Abdullah Alamri

2021 ◽  
Vol 8 (8) ◽  
pp. 1428-1439
Author(s):  
Kunhua Liu ◽  
Zihao Ye ◽  
Hongyan Guo ◽  
Dongpu Cao ◽  
Long Chen ◽  
...  

2020 ◽  
Vol 33 (4) ◽  
pp. 816-825
Author(s):  
Kyeong Taek Oh ◽  
Sangwon Lee ◽  
Haeun Lee ◽  
Mijin Yun ◽  
Sun K. Yoo

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bin Huang ◽  
Jiaqi Lin ◽  
Jinming Liu ◽  
Jie Chen ◽  
Jiemin Zhang ◽  
...  

Separating printed or handwritten characters from a noisy background is valuable for many applications including test paper autoscoring. The complex structure of Chinese characters makes it difficult to obtain the goal because of easy loss of fine details and overall structure in reconstructed characters. This paper proposes a method for separating Chinese characters based on generative adversarial network (GAN). We used ESRGAN as the basic network structure and applied dilated convolution and a novel loss function that improve the quality of reconstructed characters. Four popular Chinese fonts (Hei, Song, Kai, and Imitation Song) on real data collection were tested, and the proposed design was compared with other semantic segmentation approaches. The experimental results showed that the proposed method effectively separates Chinese characters from noisy background. In particular, our methods achieve better results in terms of Intersection over Union (IoU) and optical character recognition (OCR) accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Tian ◽  
Xiaorou Zhong ◽  
Ming Chen

Accurate remote sensing image segmentation can guide human activities well, but current image semantic segmentation methods cannot meet the high-precision semantic recognition requirements of complex images. In order to further improve the accuracy of remote sensing image semantic segmentation, this paper proposes a new image semantic segmentation method based on Generative Adversarial Network (GAN) and Fully Convolutional Neural Network (FCN). This method constructs a deep semantic segmentation network based on FCN, which can enhance the receptive field of the model. GAN is integrated into FCN semantic segmentation network to synthesize the global image feature information and then accurately segment the complex remote sensing image. Through experiments on a variety of datasets, it can be seen that the proposed method can meet the high-efficiency requirements of complex image semantic segmentation and has good semantic segmentation capabilities.


2018 ◽  
Author(s):  
Gongbo Liang ◽  
Sajjad Fouladvand ◽  
Jie Zhang ◽  
Michael A. Brooks ◽  
Nathan Jacobs ◽  
...  

AbstractComputed tomography (CT) is a widely-used diag-reproducibility regarding radiomic features, such as intensity, nostic image modality routinely used for assessing anatomical tissue characteristics. However, non-standardized imaging pro-tocols are commonplace, which poses a fundamental challenge in large-scale cross-center CT image analysis. One approach to address the problem is to standardize CT images using generative adversarial network models (GAN). GAN learns the data distribution of training images and generate synthesized images under the same distribution. However, existing GAN models are not directly applicable to this task mainly due to the lack of constraints on the mode of data to generate. Furthermore, they treat every image equally, but in real applications, some images are more difficult to standardize than the others. All these may lead to the lack-of-detail problem in CT image synthesis. We present a new GAN model called GANai to mitigate the differences in radiomic features across CT images captured using non-standard imaging protocols. Given source images, GANai composes new images by specifying a high-level goal that the image features of the synthesized images should be similar to those of the standard images. GANai introduces an alternative improvement training strategy to alternatively and steadily improve model performance. The new training strategy enables a series of technical improvements, including phase-specific loss functions, phase-specific training data, and the adoption of ensemble learning, leading to better model performance. The experimental results show that GANai is significantly better than the existing state-of-the-art image synthesis algorithms on CT image standardization. Also, it significantly improves the efficiency and stability of GAN model training.


2021 ◽  
Author(s):  
Khandakar Tanvir Ahmed ◽  
Jiao Sun ◽  
Jeongsik Yong ◽  
Wei Zhang

Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous diseases like cancer in the era of precision medicine. With the advent of high throughput technologies, more comprehensive multi-omics data is now available that can effectively link the genotype to phenotype. However, the interactive relation of multi-omics datasets makes it particularly challenging to incorporate different biological layers to discover the coherent biological signatures and predict phenotypic outcomes. In this study, we introduce omicsGAN, a generative adversarial network (GAN) model to integrate two omics data and their interaction network. The model captures information from the interaction network as well as the two omics datasets and fuse them to generate synthetic data with better predictive signals. Large-scale experiments on The Cancer Genome Atlas (TCGA) breast cancer and ovarian cancer datasets validate that (1) the model can effectively integrate two omics data (i.e., mRNA and microRNA expression data) and their interaction network (i.e., microRNA-mRNA interaction network). The synthetic omics data generated by the proposed model has a better performance on cancer outcome classification and patients survival prediction compared to original omics datasets. (2) The integrity of the interaction network plays a vital role in the generation of synthetic data with higher predictive quality. Using a random interaction network does not allow the framework to learn meaningful information from the omics datasets; therefore, results in synthetic data with weaker predictive signals.


Sign in / Sign up

Export Citation Format

Share Document