scholarly journals Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network

2016 ◽  
Vol 5 (12) ◽  
pp. 219 ◽  
Author(s):  
Tobias Törnros ◽  
Bernd Resch ◽  
Matthias Rupp ◽  
Hartmut Gündra
2014 ◽  
Vol 472 ◽  
pp. 1052-1056
Author(s):  
Chun Hui Liao ◽  
Zhi Gang Zhou ◽  
Jia Ning Zhao

For evaluating the performance of combined heat and power district heating (CHP-DH) system, some thermodynamic indicators of CHP system, include energy efficiency, exergy efficiency, RPES and RAI, are introduced in this paper. Based on two condensed and heating dual purpose plants, the values of these indicators are calculated with different extraction ratio. The results show that RAI and RPES are more reasonable to be used to assess CHP-DH system and there is a minimum extraction ratio for each unit, which is 0.4 for given plants in this paper, to keep CHP-DH beneficial compared with separate heat and power (SHP) system. Besides, the minimum heat demand of CHP-DH system should be larger than the supplied heat correspond to minimum extraction ratio.


Author(s):  
P C Warner ◽  
R A McFadden ◽  
R A J Moodie ◽  
G P White

Edinburgh and Belfast are two of the cities where the financial prospects for district heating from combined heat and power (CHP) are being investigated by consortia combining industrial membership (substantially the same for both) with strong local interests; the object is to learn whether city CHP schemes can appeal to the private investor. The paper deals with the historical build-up of interest in CHP in both places, leading to the formation of consortia in response to a government invitation, and the award of grant-in-aid announced in January 1985. It then explains how the two studies have been planned and sets out their content: the key technical and commercial factors, and also the statutory and other more general considerations. The work is well under way, and the paper reports on progress, including field work to ascertain heat demand, the choice of fuels and sites for heat-only sources and for the combined plant, and the sequencing of implementation progressively across the city.


2017 ◽  
Vol 149 ◽  
pp. 225-234 ◽  
Author(s):  
I. Andrić ◽  
André Pina ◽  
Paulo Ferrão ◽  
Jérémy Fournier ◽  
Bruno Lacarrière ◽  
...  

2013 ◽  
Vol 467 ◽  
pp. 270-276 ◽  
Author(s):  
Jarosław Milewski ◽  
Marcin Wołowicz ◽  
Wojciech Bujalski

The paper presents a theoretical investigation of using a Seasonal Thermal Energy Storage facility (STES) to cover the heat demand of a complex of four buildings. The STES is placed in the ground and connected to both the local district heating network and solar panels. A number of scenarios were investigated to find an adequate size of the STES (tank size and solar panel area.) The results obtained show that the use of a STES could reduce heat consumption by 22100% depending on the architecture solution chosen.


2019 ◽  
pp. 46-53
Author(s):  
Louise Ödlund ◽  
Viktor Svensson ◽  
Anna Widengren

District heating systems play an important role for increased system efficiency and reduced climate impact. However, the heat market is changing in many ways. Some example of that is that current climate change reduces the heat demand for the buildings, more energy efficient houses are being built, and the competition from other heating actors escalates. Increased knowledge and cooperation with customers is therefore crucial for the district heating industry. Today, several real estate companies are considering replacing installed district heating and instead investing in their own heat pump solutions, which means that the energy utilities are facing reduced demand of heat. In this perspective, it is important to open up for increased cooperation between different energy sources. No energy source alone can fulfil a regions total demand of heat. Increase cooperation between different sectors, and a systems perspective with regard to the region's total energy demand, is therefore crucial to alter the use of energy towards more sustainability. Attractive price models that encourage energy efficiency and lead to reduce system cost must be developed embracing broth users and suppliers for the whole energy system. The aim of this study is to show what measure for energy supplier and energy users that leads to both reduced climate impact as well as reduced system cost for the whole energy system. The study analyses price models for district heating and future heat demand in a region. A system perspective is applied using a back-casting angel with a desirable sustainable vision.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3673-3684
Author(s):  
Borna Doracic ◽  
Marino Grozdek ◽  
Tomislav Puksec ◽  
Neven Duic

District heating systems already play an important role in increasing the sustainability of the heating sector and decreasing its environmental impact. However, a high share of these systems is old and inefficient and therefore needs to change towards the 4th generation district heating, which will incorporate various energy sources, including renewables and excess heat of different origins. Especially excess heat from industrial and service sector facilities is an interesting source since its potential has already been proven to be highly significant, with some researches showing that it could cover the heat demand of the entire residential and service sector in Europe. However, most analyses of its utilisation in district heating are not done on the hourly level, therefore not taking into account the variability of its availability. For that reason, the main goal of this work was to analyse the integration of industrial excess heat into the district heating system consisting of different configurations, including the zero fuel cost technologies like solar thermal. Furthermore, cogeneration units were a part of every simulated configuration, providing the link to the power sector. Excess heat was shown to decrease the operation of peak load boiler and cogeneration, that way decreasing the costs and environmental effect of the system. However, since its hourly availability differs from the heat demand, thermal storage needs to be implemented in order to increase the utilisation of this source. The analysis was performed on the hourly level in the energyPRO software


2021 ◽  
Vol 246 ◽  
pp. 09003
Author(s):  
Haoran Li ◽  
Juan Hou ◽  
Yuemin Ding ◽  
Natasa Nord

Peak load has significant impacts on the economic and environmental performance of district heating systems. Future sustainable district heating systems will integrate thermal storages and renewables to shave their peak heat demand from traditional heat sources. This article analysed the techno-economic potential of implementing thermal storage for peak load shaving, especially for the district heating systems with waste heat recovery. A campus district heating system in Norway was chosen as the case study. The system takes advantage of the waste heat from the campus data centre. Currently, about 20% of the heating bill is paid for the peak load, and a mismatch between the available waste heat and heat demand was detected. The results showed that introducing water tank thermal storage brought significant effects on peak load shaving and waste heat recovery. Those effects saved up to 112 000 EUR heating bills annually, and the heating bill paid for the peak load could be reduced by 15%. Meanwhile, with the optimal sizing and operation, the payback period of the water tank could be decreased to 13 years. Findings from this study might help the heat users to evaluate the economic feasibility of introducing thermal storage.


Sign in / Sign up

Export Citation Format

Share Document