scholarly journals Perspective on pricing district heating pricing in Sustainable energy systems

2019 ◽  
pp. 46-53
Author(s):  
Louise Ödlund ◽  
Viktor Svensson ◽  
Anna Widengren

District heating systems play an important role for increased system efficiency and reduced climate impact. However, the heat market is changing in many ways. Some example of that is that current climate change reduces the heat demand for the buildings, more energy efficient houses are being built, and the competition from other heating actors escalates. Increased knowledge and cooperation with customers is therefore crucial for the district heating industry. Today, several real estate companies are considering replacing installed district heating and instead investing in their own heat pump solutions, which means that the energy utilities are facing reduced demand of heat. In this perspective, it is important to open up for increased cooperation between different energy sources. No energy source alone can fulfil a regions total demand of heat. Increase cooperation between different sectors, and a systems perspective with regard to the region's total energy demand, is therefore crucial to alter the use of energy towards more sustainability. Attractive price models that encourage energy efficiency and lead to reduce system cost must be developed embracing broth users and suppliers for the whole energy system. The aim of this study is to show what measure for energy supplier and energy users that leads to both reduced climate impact as well as reduced system cost for the whole energy system. The study analyses price models for district heating and future heat demand in a region. A system perspective is applied using a back-casting angel with a desirable sustainable vision.

Author(s):  
Jaspreet S. Nijjar ◽  
Alan S. Fung ◽  
Larry Hughes ◽  
Hessam Taherian

There are several benefits to district heating systems. The system design requires knowledge of community peak heating load and annual heating energy requirements. For this purpose, a residential energy model was developed using several energy usage databases. Hourly, peak, and annual heating demands were estimated by simulating 15 archetype houses using an hour-by-hour building simulation program, ENERPASS. Estimated heating profiles from model houses were used to design a district heating system for a hypothetical rural community in Nova Scotia. The findings show that building simulation is a very flexible and valuable tool in identifying the required peak and hourly energy demand of a community for the design of district energy system, and biomass district heating system can reduce community greenhouse gas emissions.


2019 ◽  
Vol 9 (15) ◽  
pp. 3194 ◽  
Author(s):  
Urbanucci ◽  
Testi ◽  
Bruno

District heating and cooling networks based on trigeneration systems and renewable energy technologies are widely acknowledged as an energy efficient and environmentally benign solution. These energy systems generally include back-up units, namely fossil-fuel boilers and electric chillers, to enhance system flexibility and cover peak energy demand. On the other hand, 4th generation district heating networks are characterized by low-temperature water distribution to improve energy and exergy efficiencies. Moreover, reversible heat pumps are a versatile technology, capable of providing both heating and cooling, alternately. In this paper, the integration of reversible heat pumps as single back-up units in hybrid renewable trigeneration systems serving low-energy micro-district heating and cooling networks is investigated. A detailed modeling of the system is provided, considering part-load and ambient condition effects on the performance of the units. Size and annual operation of the proposed system are optimized in a case study, namely a large office building located in Pisa (Italy), by means of a genetic algorithm-based procedure. A comparison with the conventional trigeneration system is performed in terms of economic and environmental perspectives. Results show that the integration of reversible heat pumps is an economically viable solution capable of reducing by 7% the equivalent annual cost, increasing the installed power of renewables up to 23%, and lowering by 11% carbon dioxide emissions, compared to the energy system with conventional back-up units.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2823
Author(s):  
Naoya Nagano ◽  
Rémi Delage ◽  
Toshihiko Nakata

As for research on sector-coupled energy systems, few studies comprehensively deal with energy carriers and energy demand sectors. Moreover, few studies have analyzed energy conversion functions such as Power-to-Gas, Power-to-Heat, and Vehicle-to-Grid on the energy system performance. This study clarifies the required renewable resources and costs in the sector-coupled energy system and cost-optimal installed capacity and operation. We formulated an optimization model considering sector coupling and conducted a case study applying the model in the Tohoku region. As a result, due to sector coupling, the total primary energy supply (TPES) is expected to decrease, and system costs are expected to increase from 1.8 to 2.4 times the current level. System costs were minimized when maximizing the use of V2G by electric vehicles and district heating systems (DHS). From the hourly analysis, it becomes clear that the peak cut effect by Power-to-Heat and the peak shift effect by Vehicle-to-Grid result in leveling the output of electrolyzer and fuel synthesizer, which improves the capacity factor reducing capacity addition. Since a large amount of renewable energy is required to realize the designed energy system, it is necessary to reduce the energy demand mainly in the industrial sector. Besides, in order to reduce costs, it is required to utilize electric vehicles by V2G and provide policy support for district heating systems in Japan.


Author(s):  
Verena Weiler ◽  
Ursula Eicker

AbstractThe importance of climate protection and sustainability is steadily increasing all over the world. However, there is a large potential for reducing emissions in the heating demand reduction and renewable heat supply of buildings that needs to be addressed. Therefore, a method was developed within the scope of this work that allows local decision-makers such as energy supply companies, project developers and the public sector to calculate, evaluate and compare different scenarios to make buildings and city districts more sustainable based on few and widely available input data. It includes both the determination of the heat demand and measures for its reduction as well as the selection and simulation of centralised and decentralised supply systems. A combination of different methods from the fields of geoinformatics, heuristic decision-making and object-oriented modelling is used. The latter forms a focal point in the work with the development of a data model for energy system components to enable automatic simulation. The applicability as well as the transferability of the method is shown in several case studies. Based on the simulations results, which can be related to CO2 emissions as well as costs, recommendations for the implementation of measures can be given and implemented.The paper is a summary of the dissertation with the title “Automatische Simulation von Wärmebedarf und -versorgung auf Quartiersebene” by the first author at Karlsruhe Institute for Technology.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2719 ◽  
Author(s):  
Moa Swing Gustafsson ◽  
Jonn Are Myhren ◽  
Erik Dotzauer ◽  
Marcus Gustafsson

A common way of calculating the life cycle cost (LCC) of building renovation measures is to approach it from the building side, where the energy system is considered by calculating the savings in the form of less bought energy. In this study a wider perspective is introduced. The LCC for three different energy renovation measures, mechanical ventilation with heat recovery and two different heat pump systems, are compared to a reference case, a building connected to the district heating system. The energy system supplying the building is assumed to be 100% renewable, where eight different future scenarios are considered. The LCC is calculated as the total cost for the renovation measures and the energy systems. All renovation measures result in a lower district heating demand, at the expense of an increased electricity demand. All renovation measures also result in an increased LCC, compared to the reference building. When aiming for a transformation towards a 100% renewable system in the future, this study shows the importance of having a system perspective, and also taking possible future production scenarios into consideration when evaluating building renovation measures that are carried out today, but will last for several years, in which the energy production system, hopefully, will change.


Energy ◽  
2010 ◽  
Vol 35 (8) ◽  
pp. 3194-3203 ◽  
Author(s):  
Kristina Difs ◽  
Marcus Bennstam ◽  
Louise Trygg ◽  
Lena Nordenstam

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3266 ◽  
Author(s):  
Moa Swing Gustafsson ◽  
Jonn Myhren ◽  
Erik Dotzauer

There are different views on whether district heating (DH) or heat pumps (HPs) is or are the best heating solution in order to reach a 100% renewable energy system. This article investigates the economic perspective, by calculating and comparing the energy system life cycle cost (LCC) for the two solutions in areas with detached houses. The LCC is calculated using Monte Carlo simulation, where all input data is varied according to predefined probability distributions. In addition to the parameter variations, 16 different scenarios are evaluated regarding the main fuel for the DH, the percentage of combined heat and power (CHP), the DH temperature level, and the type of electrical backup power. Although HP is the case with the lowest LCC for most of the scenarios, there are alternatives for each scenario in which either HP or DH has the lowest LCC. In alternative scenarios with additional electricity transmission costs, and a marginal cost perspective regarding the CHP investment, DH has the lowest LCC overall, taking into account all scenarios. The study concludes that the decision based on energy system economy on whether DH should expand into areas with detached houses must take local conditions into consideration.


2021 ◽  
Vol 263 ◽  
pp. 04016
Author(s):  
Stanislav Chicherin ◽  
Andrey Zhuikov ◽  
Mikhail Kolosov ◽  
Lyazzat Junussova ◽  
Madina Aliyarova ◽  
...  

For a DH network a meticulous analysis is required to detect a correlation of a reduction in energy demand from one year to another. The factors, which lead to such inconsistency, force an energy company (1) to modernize equipment at a consumer side and (2) to lower network operating temperatures. It results into so called fourth generation district heating (4GDH). The current research focuses on large-scale DH systems and DHW as second largest share of heat demand. The heat delays, thermal inertia and DHW consumption patterns are specified further since they might represent a natural heating accumulator. In this case, daily flow changes are considered, as they influence a DH system performance and desirable TES capacity. However, more precise profiles can be achieved by detecting the actual flow curve, and measuring the temperature difference between substation supply and return line. The dimensioning of DH systems requires comprehensive understanding of simultaneity factors. Thus, we consider substations with DHW preparation to choose the optimal size of the heat distribution network according to the new method. Case study is a DH system in Omsk, which includes residential houses (both SH and DHW coverage), and university buildings (more demand results from process heat). The operation of the system was studied for the period from the 1st of January to 31st of December 2020. We suggest a TES with a capacity of 0.04 MWh; based on the traditional temperature range, the volume is about 0.5 m3. Daily compensation time is 2-3 hours, when there is a reduction in the supply flow rate of 1500 t/h with minimum DH plant make-up. The entire DH system requires about 400 t of hot water make-up to reach the quasi-steady state conditions after the night DHW shutdown. Using the threshold of the traditional model, it hardly fits an operational value - it is better set according to novel method (0.1 MW). For similar relations between circulation and DHW flow rates, the systems with a HE result in higher circulating flows than the substations with no one. The consumer benefit from consuming DHW and heat according to more accurate profiles accounts 1.72 billion USD. It is quantified by considering avoiding using a back-up electricity source to ensure DHW service when a DH plant supplies enough heat. Moreover, if a TES is controlled according to the method detailed, it alleviates the stress for intermittent operation by compensating the transients of SH and DHW loads. 4GDH concept should be considered according to: (1) the operational data, (2) new DHW demand assessments, and (3) using TES to buffer peaks.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5462
Author(s):  
Salah Vaisi ◽  
Saleh Mohammadi ◽  
Kyoumars Habibi

District heating (DH) has a major potential to increase the efficiency, security, and sustainability of energy management at the community scale. However, there is a huge challenge for decision makers due to the lack of knowledge about thermal energy demand during a year. Thermal energy demand is strongly dependent on the outdoor temperature, building area, and activities. In this context, this paper presents an innovative monthly thermal energy mapping method to calculate and visualize heat demand accurately for various types of buildings. The method includes three consecutive phases: (i) calculating energy loss, (ii) completing a dataset that includes energy and building information, and (iii) generating the monthly heat demand maps for the community. Determining the amount of demand and the best location for energy generators from the perspective of energy efficiency in a DH system in an urban context is one of the important applications of heat maps. Exploring heat demand characteristics and visualizing them on maps is the foundation of smart DHs.


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Sign in / Sign up

Export Citation Format

Share Document