scholarly journals Evolving Spatial Data Infrastructures and the Role of Adaptive Governance

2017 ◽  
Vol 6 (8) ◽  
pp. 254 ◽  
Author(s):  
Jaap-Willem Sjoukema ◽  
Arnold Bregt ◽  
Joep Crompvoets
2015 ◽  
Vol 14 (2) ◽  
pp. 21-36 ◽  
Author(s):  
Lukáš Brůha

The advancements in geospatial web technology triggered efforts for disclosure of valuable resources of historical collections. This paper focuses on the role of spatial data infrastructures (SDI) in such efforts. The work describes the interplay between SDI technologies and potential use cases in libraries such as cartographic heritage. The metadata model is introduced to link up the sources from these two distinct fields. To enhance the data search capabilities, the work focuses on the representation of the content-based metadata of raster images, which is the crucial prerequisite to target the search in a more effective way. The architecture of the prototype system for automatic raster data processing, storage, analysis and distribution is introduced. The architecture responds to the characteristics of input datasets, namely to the continuous flow of very large raster data and related metadata. Proposed solutions are illustrated on the case study of cartometric analysis of digitised early maps and related metadata encoding.


2011 ◽  
Vol 11 (12) ◽  
pp. 3157-3170 ◽  
Author(s):  
K. Kalabokidis ◽  
N. Athanasis ◽  
M. Vaitis

Abstract. With the proliferation of the geospatial technologies on the Internet, the role of geo-portals (i.e. gateways to Spatial Data Infrastructures) in the area of wildfires management emerges. However, keyword-based techniques often frustrate users when looking for data of interest in geo-portal environments, while little attention has been paid to shift from the conventional keyword-based to navigation-based mechanisms. The presented OntoFire system is an ontology-based geo-portal about wildfires. Through the proposed navigation mechanisms, the relationships between the data can be discovered, which would otherwise not be possible when using conventional querying techniques alone. End users can use the browsing interface to find resources of interest by using the navigation mechanisms provided. Data providers can use the publishing interface to submit new metadata, modify metadata or removing metadata in/from the catalogue. The proposed approach can improve the discovery of valuable information that is necessary to set priorities for disaster mitigation and prevention strategies. OntoFire aspires to be a focal point of integration and management of a very large amount of information, contributing in this way to the dissemination of knowledge and to the preparedness of the operational stakeholders.


2020 ◽  
Vol 9 (3) ◽  
pp. 176 ◽  
Author(s):  
Alexander Kotsev ◽  
Marco Minghini ◽  
Robert Tomas ◽  
Vlado Cetl ◽  
Michael Lutz

The availability of timely, accessible and well documented data plays a central role in the process of digital transformation in our societies and businesses. Considering this, the European Commission has established an ambitious agenda that aims to leverage on the favourable technological and political context and build a society that is empowered by data-driven innovation. Within this context, geospatial data remains critically important for many businesses and public services. The process of establishing Spatial Data Infrastructures (SDIs) in response to the legal provisions of the European Union INSPIRE Directive has a long history. While INSPIRE focuses mainly on ’unlocking’ data from the public sector, there is need to address emerging technological trends, and consider the role of other actors such as the private sector and citizen science initiatives. The objective of this paper, given those bounding conditions is twofold. Firstly, we position SDI-related developments in Europe within the broader context of the current political and technological scenery. In doing so, we pay particular attention to relevant technological developments and emerging trends that we see as enablers for the evolution of European SDIs. Secondly, we propose a high level concept of a pan-European (geo)data space with a 10-year horizon in mind. We do this by considering today’s technology while trying to adopt an evolutionary approach with developments that are incremental to contemporary SDIs.


Author(s):  
Glenn Vancauwenberghe ◽  
Ezra Dessers ◽  
Joep Crompvoets ◽  
Danny Vandenbroucke

2016 ◽  
Vol 7 (3) ◽  
pp. 1-37
Author(s):  
Willington Siabato ◽  
Javier Moya-Honduvilla ◽  
Miguel Ángel Bernabé-Poveda

The way aeronautical information is managed and disseminated must be modernized. Current aeronautical information services (AIS) methods for storing, publishing, disseminating, querying, and updating the volume of data required for the effective management of air traffic control have become obsolete. This does not contribute to preventing airspace congestion, which turns into a limiting factor for economic growth and generates negative effects on the environment. Owing to this, some work plans for improving AIS and air traffic flow focus on data and services interoperability to allow an efficient and coordinated use and exchange of aeronautical information. Geographic information technologies (GIT) and spatial data infrastructures (SDI) are comprehensive technologies upon which any service that integrates geospatial information can rely. The authors are working on the assumption that the foundations and underlying technologies of GIT and SDI can be applied to support aeronautical data and services, considering that aeronautical information contains a large number of geospatial components. This article presents the design, development, and implementation of a Web-based system architecture to evolve and enhance the use and management of aeronautical information in any context, e.g., in aeronautical charts on board, in control towers, and in aeronautical information services. After conducting a study into the use of aeronautical information, it was found that users demand specific requirements regarding reliability, flexibility, customization, integration, standardization, and cost reduction. These issues are not being addressed with existing systems and methods. A system compliant with geographic standards (OGC, ISO) and aeronautical regulations (ICAO, EUROCONTROL) and supported by a scalable and distributed Web architecture is proposed. This proposal would solve the shortcomings identified in the study and provide aeronautical information management (AIM) with new methods and strategies. In order to seek aeronautical data and services interoperability, a comprehensive aeronautical metadata profile has been defined. This proposal facilitates the use, retrieval, updating, querying, and editing of aeronautical information, as well as its exchange between different private and public institutions. The tests and validations have shown that the proposal is achievable.


Survey Review ◽  
2016 ◽  
Vol 50 (360) ◽  
pp. 191-200 ◽  
Author(s):  
Collins Mwange ◽  
Galcano Canny Mulaku ◽  
David N Siriba

Sign in / Sign up

Export Citation Format

Share Document