scholarly journals Detection of Microrelief Objects to Impede the Movement of Vehicles in Terrain

2019 ◽  
Vol 8 (3) ◽  
pp. 101 ◽  
Author(s):  
Filip Dohnal ◽  
Martin Hubacek ◽  
Katerina Simkova

Relief of terrain as a part of the landscape greatly affects the possibilities of vehicles moving off the road. The main influence on the movement is the slope of terrain and the occurrence of microrelief objects. While the slope limits can be easily modeled in the GIS environment, it is difficult to express the effect of the microrelief on the possibilities of moving vehicles. The aim of this work was to find procedures for identification of impassable microrelief objects using GIS tools and precise digital elevation models. Technical parameters defining the ability of a vehicle to overcome microrelief objects are known and these are mainly defined by the dimensions of the vehicle such as a wheel base, a ground clearance, approach angle, and others. Large-scale digital elevation models have not been able to reliably express the location and shape of microrelief objects until recently. Their accuracy of height in nodes achieved meter or decimeter values. The change occurred with the use of airborne laser scanning technology for digital elevation model creation. The accuracy of models created using this technology achieves centimeter values. These can be used for detection of microrelief objects. One of these models is the DMR5 from the territory of the Czech Republic. Its declared total mean height error is 0.18 meters. This model, together with the GIS tools and the technical parameters of individual vehicles, was used to search for such microrelief objects that act as a barrier to movement. Procedures for detecting impassable microrelief objects were created by ArcGIS tools. Modeling tools and mathematical methods were used to create procedures for detection of microrelief objects. These have been applied to selected locations in the Czech Republic. Raster layers representing individual impassable microrelief objects are the result of modeling. The modeling results were verified in the terrain using military vehicles. Field tests confirmed the high reliability of the proposed procedure. Therefore, the calculation process was optimized and will be introduced in the future as one of the input calculations of the complex model of passability in the Army of the Czech Republic.

Author(s):  
M. Hubacek ◽  
V. Kovarik ◽  
V. Kratochvil

Digital elevation models are today a common part of geographic information systems and derived applications. The way of their creation is varied. It depends on the extent of area, required accuracy, delivery time, financial resources and technologies available. The first model covering the whole territory of the Czech Republic was created already in the early 1980's. Currently, the 5th DEM generation is being finished. Data collection for this model was realized using the airborne laser scanning which allowed creating the DEM of a new generation having the precision up to a decimetre. Model of such a precision expands the possibilities of employing the DEM and it also offers new opportunities for the use of elevation data especially in a domain of modelling the phenomena dependent on highly accurate data. The examples are precise modelling of hydrological phenomena, studying micro-relief objects, modelling the vehicle movement, detecting and describing historical changes of a landscape, designing constructions etc. <br><br> Due to a nature of the technology used for collecting data and generating DEM, it is assumed that the resulting model achieves lower accuracy in areas covered by vegetation and in built-up areas. Therefore the verification of model accuracy was carried out in five selected areas in Moravia. The network of check points was established using a total station in each area. To determine the reference heights of check points, the known geodetic points whose heights were defined using levelling were used. Up to several thousands of points were surveyed in each area. Individual points were selected according to a different configuration of relief, different surface types, and different vegetation coverage. The sets of deviations were obtained by comparing the DEM 5G heights with reference heights which was followed by verification of tested elevation model. Results of the analysis showed that the model reaches generally higher precision than the declared one in majority of areas. This applies in particular to areas covered by vegetation. By contrast, the larger deviations occurred in relation to the slope of the terrain, in particular in the micro-relief objects. The results are presented in this article.


2013 ◽  
Vol 10 ◽  
pp. 15-26 ◽  
Author(s):  
Jiří Šíma

The paper illustrates the development of digital aerial survey and digital elevation models covering the entire area of the Czech Republic at the beginning of 21st century. It also presents some results of systematic investigation of their quality parameters reached by the author in cooperation with Department of Geomatics at the Faculty of Applied Sciences of the University of Western Bohemia in Pilsen and the Land Survey Office.


Author(s):  
M. Hubacek ◽  
V. Kovarik ◽  
V. Kratochvil

Digital elevation models are today a common part of geographic information systems and derived applications. The way of their creation is varied. It depends on the extent of area, required accuracy, delivery time, financial resources and technologies available. The first model covering the whole territory of the Czech Republic was created already in the early 1980's. Currently, the 5th DEM generation is being finished. Data collection for this model was realized using the airborne laser scanning which allowed creating the DEM of a new generation having the precision up to a decimetre. Model of such a precision expands the possibilities of employing the DEM and it also offers new opportunities for the use of elevation data especially in a domain of modelling the phenomena dependent on highly accurate data. The examples are precise modelling of hydrological phenomena, studying micro-relief objects, modelling the vehicle movement, detecting and describing historical changes of a landscape, designing constructions etc. &lt;br&gt;&lt;br&gt; Due to a nature of the technology used for collecting data and generating DEM, it is assumed that the resulting model achieves lower accuracy in areas covered by vegetation and in built-up areas. Therefore the verification of model accuracy was carried out in five selected areas in Moravia. The network of check points was established using a total station in each area. To determine the reference heights of check points, the known geodetic points whose heights were defined using levelling were used. Up to several thousands of points were surveyed in each area. Individual points were selected according to a different configuration of relief, different surface types, and different vegetation coverage. The sets of deviations were obtained by comparing the DEM 5G heights with reference heights which was followed by verification of tested elevation model. Results of the analysis showed that the model reaches generally higher precision than the declared one in majority of areas. This applies in particular to areas covered by vegetation. By contrast, the larger deviations occurred in relation to the slope of the terrain, in particular in the micro-relief objects. The results are presented in this article.


2017 ◽  
Vol 755 ◽  
pp. 333-339 ◽  
Author(s):  
Jan Sobotka

The article presents new possibilities of earthworks designing on new elevation data of the Czech Republic. These new elevation data are the result of the airborne laser scanning of the Czech Republic, which replace the old one. The new digital elevation database is another source of elevation data, which can be used during earthworks designing. Furthermore, the paper presents two projects, where new elevation data were used in practice.


2015 ◽  
Vol 23 (1) ◽  
pp. 21-33
Author(s):  
Pavel Domalewski ◽  
Jan Baxa

Abstract The factors that were crucial for the construction of administrative buildings in the regional capitals of the Czech Republic are subject to examination in this article. One primary question is whether the development of office construction reflects the qualitative importance of the cities, or whether there are some other regularities in the spatial distribution of construction. To identify the key factors, controlled interviews with experts professionally involved in the construction of administrative buildings were carried out, and these data were then extended as part of a large-scale questionnaire survey with other experts on the issue. The results have confirmed the dominant position of the capital city of Prague in terms of its qualitative importance, as the remaining regional capitals have less than one-tenth of the volume of modern office building areas. The greatest differences in the construction of administrative buildings have been noted in Brno and Ostrava, despite the fact that they exhibit similar characteristics when considered in the light of respondent-determined factors.


2019 ◽  
Vol 10 (3) ◽  
pp. 784-802
Author(s):  
Felipe Martinez

Purpose The purpose of this paper is to present the findings of an empirical research on the leanness of the home services sector in the Czech Republic. The automotive sector provides reference to argue the numerical outcomes. Design/methodology/approach The research uses a specifically designed assessment tool (Lean Index – LI) to determine the sector’s leanness level. Referring to the results from both sectors, the paper draws conclusions about the current leanness level of home services providers. Findings The proposed LI indicates a value of 69.50 per cent for home services providers, whereas the LI for the automotive industry suppliers is 82.88 per cent. This suggests that there are large opportunities for the implementation of lean management in the home services sector. However, the main challenge is to introduce a continuous improvement approach to these companies. Research limitations/implications The sample size limits the generalisation of the research results. However, this paper represents the first empirical attempt to implement a large-scale survey. The results are limited to the Czech Republic. However, parties from other countries have indicated interest to replicate the research. Practical implications This research provides first empirical findings on the possibilities of implementing lean in the home services sector. Future research projects in other sectors will have the opportunity to make use of the LI assessment tool. Originality/value The paper presents the first approach of lean management into the home services sector. It provides valuable information to specialised institutions in the sector about the possibilities of lean management in the sector. It also provides an overview of the sector for practitioners and academics willing to pioneer lean in the sector.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 117 ◽  
Author(s):  
František Chudý ◽  
Martina Slámová ◽  
Julián Tomaštík ◽  
Roberta Prokešová ◽  
Martin Mokroš

An active gully-related landslide system is located in a deep valley under forest canopy cover. Generally, point clouds from forested areas have a lack of data connectivity, and optical parameters of scanning cameras lead to different densities of point clouds. Data noise or systematic errors (missing data) make the automatic identification of landforms under tree canopy problematic or impossible. We processed, analyzed, and interpreted data from a large-scale landslide survey, which were acquired by the light detection and ranging (LiDAR) technology, remotely piloted aircraft system (RPAS), and close-range photogrammetry (CRP) using the ‘Structure-from-Motion’ (SfM) method. LAStools is a highly efficient Geographic Information System (GIS) tool for point clouds pre-processing and creating precise digital elevation models (DEMs). The main landslide body and its landforms indicating the landslide activity were detected and delineated in DEM-derivatives. Identification of micro-scale landforms in precise DEMs at large scales allow the monitoring and the assessment of these active parts of landslides that are invisible in digital terrain models at smaller scales (obtained from aerial LiDAR or from RPAS) due to insufficient data density or the presence of many data gaps.


Sign in / Sign up

Export Citation Format

Share Document