scholarly journals Transcriptome Analysis Reveals Candidate Genes Associated with Leaf Etiolation of a Cytoplasmic Male Sterility Line in Chinese Cabbage (Brassica Rapa L. ssp. Pekinensis)

2018 ◽  
Vol 19 (4) ◽  
pp. 922 ◽  
Author(s):  
Fei Xie ◽  
Jia-Lan Yuan ◽  
Yi-Xiao Li ◽  
Can-Jie Wang ◽  
Hong-Yu Tang ◽  
...  
Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 157
Author(s):  
Lijiao Hu ◽  
Xiaowei Zhang ◽  
Yuxiang Yuan ◽  
Zhiyong Wang ◽  
Shuangjuan Yang ◽  
...  

Ogura cytoplasmic male sterility (Ogura CMS), originally identified in wild radish (Raphanus sativus), has enabled complete pollen sterility in Brassica plants, but the underlying mechanism in Ogura CMS Chinese cabbage (Brassica rapa ssp. pekinensis) remains unclear. In this study cytological analysis showed that during microsporogenesis the meiosis occurred normally, and the uninucleated pollens subsequently formed, but the development of both binucleated and trinucleated pollens was obviously disrupted due to defects of pollen mitosis in the Ogura CMS line (Tyms) compared with the corresponding maintainer line (231–330). In transcriptome profiling a total of 8052 differentially expressed genes (DEGs) were identified, among which 3890 were up-regulated and 4162 were down-regulated at the pollen abortion stages in an Ogura CMS line. KOG cluster analysis demonstrated that a large number of DEGs were related to the cytoskeleton’s dynamics, which may account for the failure of pollen mitosis during development in the Ogura CMS line. The pivotal genes related to the phenylpropane synthesis pathway (PAL, 4CL and CAD) were significantly down-regulated, which probably affected the formation and disposition of anther lignin and sporopollenin, and eventually led to abnormality in the pollen exine structure. In addition, several key up-regulated genes (GPX7, G6PD and PGD1) related to the glutathione oxidation-reduction (REDOX) reaction indicated that the accumulation of peroxides in Ogura CMS lines during this period affected the pollen development. Taken together, this cytological and molecular evidence is expected to advance our understanding of pollen abortion induced by Ogura cytoplasmic action in Chinese cabbage.


BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Shuangshuang Li ◽  
Zhiwen Chen ◽  
Nan Zhao ◽  
Yumei Wang ◽  
Hushuai Nie ◽  
...  

2013 ◽  
Vol 1 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Li Liu ◽  
Yeong Deuk Jo ◽  
Won-Hee Kang ◽  
Dosun Kim ◽  
Byoung-Cheorl Kang

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zihan Liu ◽  
Sha Li ◽  
Wei Li ◽  
Qi Liu ◽  
Lingli Zhang ◽  
...  

Abstract Background Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of heterosis and various types of CMS often have different abortion mechanisms. Therefore, it is important to understand the molecular mechanisms related to anther abortion in wheat, which remain unclear at present. Results In this study, five isonuclear alloplasmic male sterile lines (IAMSLs) and their maintainer were investigated. Cytological analysis indicated that the abortion type was identical in IAMSLs, typical and stainable abortion, and the key abortive period was in the binucleate stage. Most of the 1,281 core shared differentially expressed genes identified by transcriptome sequencing compared with the maintainer in the vital abortive stage were involved in the metabolism of sugars, oxidative phosphorylation, phenylpropane biosynthesis, and phosphatidylinositol signaling, and they were downregulated in the IAMSLs. Key candidate genes encoding chalcone--flavonone isomerase, pectinesterase, and UDP-glucose pyrophosphorylase were screened and identified. Moreover, further verification elucidated that due to the impact of downregulated genes in these pathways, the male sterile anthers were deficient in sugar and energy, with excessive accumulations of ROS, blocked sporopollenin synthesis, and abnormal tapetum degradation. Conclusions Through comparative transcriptome analysis, an intriguing core transcriptome-mediated male-sterility network was proposed and constructed for wheat and inferred that the downregulation of genes in important pathways may ultimately stunt the formation of the pollen outer wall in IAMSLs. These findings provide insights for predicting the functions of the candidate genes, and the comprehensive analysis of our results was helpful for studying the abortive interaction mechanism in CMS wheat.


2013 ◽  
Vol 32 (10) ◽  
pp. 1531-1542 ◽  
Author(s):  
Hideaki Suzuki ◽  
Laura Rodriguez-Uribe ◽  
Jiannong Xu ◽  
Jinfa Zhang

Sign in / Sign up

Export Citation Format

Share Document