scholarly journals Comparative Transcriptome Identifies Gene Expression Networks Regulating Developmental Pollen Abortion in Ogura Cytoplasmic Male Sterility in Chinese Cabbage (Brassica rapa ssp. pekinensis)

Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 157
Author(s):  
Lijiao Hu ◽  
Xiaowei Zhang ◽  
Yuxiang Yuan ◽  
Zhiyong Wang ◽  
Shuangjuan Yang ◽  
...  

Ogura cytoplasmic male sterility (Ogura CMS), originally identified in wild radish (Raphanus sativus), has enabled complete pollen sterility in Brassica plants, but the underlying mechanism in Ogura CMS Chinese cabbage (Brassica rapa ssp. pekinensis) remains unclear. In this study cytological analysis showed that during microsporogenesis the meiosis occurred normally, and the uninucleated pollens subsequently formed, but the development of both binucleated and trinucleated pollens was obviously disrupted due to defects of pollen mitosis in the Ogura CMS line (Tyms) compared with the corresponding maintainer line (231–330). In transcriptome profiling a total of 8052 differentially expressed genes (DEGs) were identified, among which 3890 were up-regulated and 4162 were down-regulated at the pollen abortion stages in an Ogura CMS line. KOG cluster analysis demonstrated that a large number of DEGs were related to the cytoskeleton’s dynamics, which may account for the failure of pollen mitosis during development in the Ogura CMS line. The pivotal genes related to the phenylpropane synthesis pathway (PAL, 4CL and CAD) were significantly down-regulated, which probably affected the formation and disposition of anther lignin and sporopollenin, and eventually led to abnormality in the pollen exine structure. In addition, several key up-regulated genes (GPX7, G6PD and PGD1) related to the glutathione oxidation-reduction (REDOX) reaction indicated that the accumulation of peroxides in Ogura CMS lines during this period affected the pollen development. Taken together, this cytological and molecular evidence is expected to advance our understanding of pollen abortion induced by Ogura cytoplasmic action in Chinese cabbage.

2019 ◽  
Vol 20 (12) ◽  
pp. 2869 ◽  
Author(s):  
Xianlong Ding ◽  
Xuan Wang ◽  
Qiang Li ◽  
Lifeng Yu ◽  
Qijian Song ◽  
...  

Abnormal reactive oxygen species (ROS) may mediate cytoplasmic male sterility (CMS). To observe the effect of ROS on soybean CMS, metabolite content and antioxidant enzyme activity in the flower buds between soybean N8855-derived CMS line and its maintainer were compared. Of the 612 metabolites identified, a total of 74 metabolites were significantly differentiated in flower buds between CMS line and its maintainer. The differential metabolites involved 32 differential flavonoids, 13 differential phenolamides, and 1 differential oxidized glutathione (GSSG) belonging to a non-enzymatic ROS scavenging system. We observed lower levels of flavonoids and antioxidant enzyme activities in flower buds of the CMS line than in its maintainer. Our results suggest that deficiencies of enzymatic and non-enzymatic ROS scavenging systems in soybean CMS line cannot eliminate ROS in anthers effectively, excessive accumulation of ROS triggered programmed cell death and ultimately resulted in pollen abortion of soybean CMS line.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ayumu Takatsuka ◽  
Tomohiko Kazama ◽  
Kinya Toriyama

Abstract Background Cytoplasmic male sterility (CMS) is a trait associated with non-functional pollen or anthers, caused by the interaction between mitochondrial and nuclear genes. Findings A Tadukan-type CMS line (TAA) and a restorer line (TAR) were obtained by successive backcrossing between the Oryza sativa cultivars Tadukan (a cytoplasmic donor) and Taichung 65 (a recurrent pollen parent). Using Illumina HiSeq, we determined whole-genome sequences of the mitochondria of TAA and screened the mitochondrial genome for the presence of open reading frame (orf) genes specific to this genome. One of these orf genes, orf312, showed differential expression patterns in TAA and TAR anthers at the meiotic and mature stages, with transcript amounts in TAR being less than those in TAA. The orf312 gene is similar to the previously described orf288, a part of which is among the components comprising WA352, a chimeric CMS-associated gene of wild-abortive-type CMS. Conclusions The orf312 gene is a promising candidate for CMS-associated gene in TAA.


2013 ◽  
Vol 1 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Li Liu ◽  
Yeong Deuk Jo ◽  
Won-Hee Kang ◽  
Dosun Kim ◽  
Byoung-Cheorl Kang

2012 ◽  
Vol 48 (No. 3) ◽  
pp. 139-142 ◽  
Author(s):  
L. Havlíčková ◽  
V. Čurn ◽  
E. Jozová ◽  
V. Kučera ◽  
M. Vyvadilová ◽  
...  

Until now in Europe has not been cultivated any hybrid cultivar of oilseed rape based on the Shaan 2A cytoplasmic male sterility (CMS), a widely used CMS system in China. The aim of Czech breeders now is to produce new, improved cultivars of rapeseed based on this CMS system. Sterile Shaan 2A CMS line (S; rf/rf), its corresponding maintainers (N; rf/rf) and fertility restorers (S; Rf/Rf) were analyzed on molecular level for the presence of functional CMS cytoplasm. Two new primer pairs covering CMS-associated gene (so called orf224-1) present in Shaan 2A CMS line were developed and selection capability of the developed primers was successfully evaluated. These primers can be used for early selection of plants with functional Shaan 2A CMS system in breeding programmes.


2019 ◽  
Vol 20 (3) ◽  
pp. 578 ◽  
Author(s):  
Peng Wang ◽  
Qiaohua Lu ◽  
Yixin Ai ◽  
Yihao Wang ◽  
Tiantian Li ◽  
...  

Cytoplasmic male sterility (CMS), which is controlled by mitochondrial genes, is an important trait for commercial hybrid seed production. So far, genes controlling this trait are still not clear in pepper. In this study, complete mitochondrial genomes were sequenced and assembled for the CMS line 138A and its maintainer line 138B. The genome size of 138A is 504,210 bp, which is 8618 bp shorter than that of 138B. Meanwhile, more than 214 and 215 open reading frames longer than 100 amino acids (aas) were identified in 138A and 138B, respectively. Mitochondrial genome structure of 138A was quite different from that of 138B, indicating the existence of recombination and rearrangement events. Based on the mitochondrial genome sequence and structure variations, mitochondrion of 138A and FS4401, a Korean origin CMS line, may have inherited from a common female ancestor, but their CMS traits did originate separately. Candidate gene selection was performed according to the published characteristics of the CMS genes, including the presence SNPs and InDels, located in unique regions, their chimeric structure, co-transcription, and transmembrane domain. A total of 35 ORFs were considered as potential candidate genes and 14 of these were selected, with orf300a and 0rf314a as strong candidates. A new marker, orf300a, was developed which did co-segregate with the CMS trait.


2011 ◽  
Vol 30 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Shuancang Yu ◽  
Fenglan Zhang ◽  
Yangjun Yu ◽  
Deshuang Zhang ◽  
Xiuyun Zhao ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shi-Fei Sang ◽  
De-Sheng Mei ◽  
Jia Liu ◽  
Qamar U. Zaman ◽  
Hai-Yan Zhang ◽  
...  

Abstract Background Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. Results Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. Conclusions Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.


Sign in / Sign up

Export Citation Format

Share Document