scholarly journals Modulation of Auxin Levels in Pollen Grains Affects Stamen Development and Anther Dehiscence in Arabidopsis

2018 ◽  
Vol 19 (9) ◽  
pp. 2480 ◽  
Author(s):  
Hernán Salinas-Grenet ◽  
Ariel Herrera-Vásquez ◽  
Samuel Parra ◽  
Allan Cortez ◽  
Lilian Gutiérrez ◽  
...  

Auxin regulates diverse aspects of flower development in plants, such as differentiation of the apical meristem, elongation of the stamen, and maturation of anthers and pollen. It is known that auxin accumulates in pollen, but little information regarding the biological relevance of auxin in this tissue at different times of development is available. In this work, we manipulated the amount of free auxin specifically in developing pollen, using transgenic Arabidopsis lines that express the bacterial indole-3-acetic acid-lysine synthetase (iaaL) gene driven by a collection of pollen-specific promoters. The iaaL gene codes for an indole-3-acetic acid-lysine synthetase that catalyzes the conversion of free auxin into inactive indole-3-acetyl-l-lysine. The transgenic lines showed several abnormalities, including the absence of short stamina, a diminished seed set, aberrant pollen tubes, and perturbations in the synchronization of anther dehiscence and stamina development. This article describes the importance of auxin accumulation in pollen and its role in stamina and anther development.

2002 ◽  
Vol 32 (4) ◽  
pp. 573-583 ◽  
Author(s):  
Rosamond G. Jackson ◽  
Mariusz Kowalczyk ◽  
Yi Li ◽  
Gillian Higgins ◽  
Joe Ross ◽  
...  

2017 ◽  
Vol 68 (5) ◽  
pp. 903-907
Author(s):  
Ecaterina Anca Serban ◽  
Ioana Diaconu ◽  
Elena Ruse ◽  
Georgiana Ileana Badea ◽  
Adriana Cuciureanu ◽  
...  

Indole-3-acetic acid is a growth phytohormone considered the most important representative of auxin class. This paper presents the assessment of some kinetic parameters in the process of transport of indole-3-acetic acid taking into consideration the kinetic model of consecutive irreversible first order reactions. It was pursued the influence upon the process of parameters such as: feed phase concentration, stripping phase concentration in the presence of two type carriers: tributyl phosphate (TBP) and trioctylphosphine oxide (TOPO). Depending on these transport parameters were calculated kinetics parameters such as: pseudo-first-order apparent membrane entrance and exit rate constants, the maximum flux at the entrance and exit out of the membrane. The highest values of the transport flux is obtained in the presence of carrier trioctylphosphine oxide (TOPO) at the concentration in the feed phase of 10-4 mol/L indole-3-acetic acid and a concentration of 10--2mol/L NaOH in the stripping phase.


2017 ◽  
Vol 7 (2) ◽  
pp. 112-120 ◽  
Author(s):  
Nazia Ahmad ◽  
Tasneem Fatma

Sign in / Sign up

Export Citation Format

Share Document