scholarly journals Fatty Acid Synthesis and Degradation Interplay to Regulate the Oxidative Stress in Cancer Cells

2019 ◽  
Vol 20 (6) ◽  
pp. 1348 ◽  
Author(s):  
Valeryia Mikalayeva ◽  
Ieva Ceslevičienė ◽  
Ieva Sarapinienė ◽  
Vaidotas Žvikas ◽  
Vytenis Skeberdis ◽  
...  

Both cytosolic fatty acid synthesis (FAS) and mitochondrial fatty acid oxidation (FAO) have been shown to play a role in the survival and proliferation of cancer cells. This study aimed to confirm experimentally whether FAS and FAO coexist in breast cancer cells (BCC). By feeding cells with 13C-labeled glutamine and measuring labeling patterns of TCA intermediates, it was possible to show that part of the cytosolic acetyl-CoA used in lipid synthesis is also fed back into the mitochondrion via fatty acid degradation. This results in the transfer of reductive potential from the cytosol (in the form of NADPH) to the mitochondrion (in the form of NADH and FADH2). The hypothesized mechanism was further confirmed by blocking FAS and FAO with siRNAs. Exposure to staurosporine (which induces ROS production) resulted in the disruption of simultaneous FAS and FAO, which could be explained by NADPH depletion.

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Zhongping Liao ◽  
Stefani N. Thomas ◽  
Yunhu Wan ◽  
H. Helen Lin ◽  
David K. Ann ◽  
...  

The endosomal/lysosomal system, in particular the endosomal sorting complexes required for transport (ESCRTs), plays an essential role in regulating the trafficking and destination of endocytosed receptors and their associated signaling molecules. Recently, we have shown that dysfunction and down-regulation of vacuolar protein sorting 4B (VPS4B), an ESCRT-III associated protein, under hypoxic conditions can lead to the abnormal accumulation of epidermal growth factor receptor (EGFR) and aberrant EGFR signaling in breast cancer. However, the pathophysiological consequences of VPS4B dysfunction remain largely elusive. In this study, we used an internal standard-assisted synthesis and degradation mass spectrometry (iSDMS) method, which permits the direct measurement of protein synthesis, degradation and protein dynamic expression, to address the effects of VPS4B dysfunction in altering EGF-mediated protein expression. Our initial results indicate that VPS4B down-regulation decreases the expression of many proteins involved in glycolytic pathways, while increased the expression of proteins with roles in mitochondrial fatty acid β-oxidation were up-regulated in VPS4B-depleted cells. This observation is also consistent with our previous finding that hypoxia can induce VPS4B down-regulated, suggesting that the adoption of fatty acid β-oxidation could potentially serve as an alternative energy source and survival mechanism for breast cancer cells in response to hypoxia-mediated VPS4B dysfunction.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2600
Author(s):  
Matheus Pinto De Oliveira ◽  
Marc Liesa

Tumors remodel their metabolism to support anabolic processes needed for replication, as well as to survive nutrient scarcity and oxidative stress imposed by their changing environment. In most healthy tissues, the shift from anabolism to catabolism results in decreased glycolysis and elevated fatty acid oxidation (FAO). This change in the nutrient selected for oxidation is regulated by the glucose-fatty acid cycle, also known as the Randle cycle. Briefly, this cycle consists of a decrease in glycolysis caused by increased mitochondrial FAO in muscle as a result of elevated extracellular fatty acid availability. Closing the cycle, increased glycolysis in response to elevated extracellular glucose availability causes a decrease in mitochondrial FAO. This competition between glycolysis and FAO and its relationship with anabolism and catabolism is conserved in some cancers. Accordingly, decreasing glycolysis to lactate, even by diverting pyruvate to mitochondria, can stop proliferation. Moreover, colorectal cancer cells can effectively shift to FAO to survive both glucose restriction and increases in oxidative stress at the expense of decreasing anabolism. However, a subset of B-cell lymphomas and other cancers require a concurrent increase in mitochondrial FAO and glycolysis to support anabolism and proliferation, thus escaping the competing nature of the Randle cycle. How mitochondria are remodeled in these FAO-dependent lymphomas to preferably oxidize fat, while concurrently sustaining high glycolysis and increasing de novo fatty acid synthesis is unclear. Here, we review studies focusing on the role of mitochondrial FAO and mitochondrial-driven lipid synthesis in cancer proliferation and survival, specifically in colorectal cancer and lymphomas. We conclude that a specific metabolic liability of these FAO-dependent cancers could be a unique remodeling of mitochondrial function that licenses elevated FAO concurrent to high glycolysis and fatty acid synthesis. In addition, blocking this mitochondrial remodeling could selectively stop growth of tumors that shifted to mitochondrial FAO to survive oxidative stress and nutrient scarcity.


2007 ◽  
Vol 27 (18) ◽  
pp. 6361-6371 ◽  
Author(s):  
Josie Ursini-Siegel ◽  
Ashish B. Rajput ◽  
Huiling Lu ◽  
Virginie Sanguin-Gendreau ◽  
Dongmei Zuo ◽  
...  

ABSTRACT Tumor cells utilize glucose as a primary energy source and require ongoing lipid biosynthesis for growth. Expression of DecR1, an auxiliary enzyme in the fatty acid β-oxidation pathway, is significantly diminished in numerous spontaneous mammary tumor models and in primary human breast cancer. Moreover, ectopic expression of DecR1 in ErbB2/Neu-induced mammary tumor cells is sufficient to reduce levels of ErbB2/Neu expression and impair mammary tumor outgrowth. This correlates with a decreased proliferative index and reduced rates of de novo fatty acid synthesis in DecR1-expressing breast cancer cells. Although DecR1 expression does not affect glucose uptake in ErbB2/Neu-transformed cells, sustained expression of DecR1 protects mammary tumor cells from apoptotic cell death following glucose withdrawal. Moreover, expression of catalytically impaired DecR1 mutants in Neu-transformed breast cancer cells restored Neu expression levels and increased mammary tumorigenesis in vivo. These results argue that DecR1 is sufficient to limit breast cancer cell proliferation through its ability to limit the extent of oncogene expression and reduce steady-state levels of de novo fatty acid synthesis. Furthermore, DecR1-mediated suppression of tumorigenesis can be uncoupled from its effects on Neu expression. Thus, while downregulation of Neu expression may contribute to DecR1-mediated tumor suppression in certain cell types, this is not an obligate event in all Neu-transformed breast cancer cells.


Biologia ◽  
2022 ◽  
Author(s):  
Jovana V. Jovankić ◽  
Danijela M. Cvetković ◽  
Milena G. Milutinović ◽  
Danijela D. Nikodijević ◽  
Aleksandra G. Nikezić ◽  
...  

2019 ◽  
Author(s):  
Helena Urquijo ◽  
Emma N Panting ◽  
Roderick N Carter ◽  
Emma J Agnew ◽  
Caitlin S Wyrwoll ◽  
...  

1991 ◽  
Vol 266 (34) ◽  
pp. 22932-22938
Author(s):  
R.S. Kler ◽  
S. Jackson ◽  
K. Bartlett ◽  
L.A. Bindoff ◽  
S. Eaton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document