scholarly journals What is the Best Radionuclide for Immuno-PET of Multiple Myeloma? A Comparison Study Between 89Zr- and 64Cu-Labeled Anti-CD138 in a Preclinical Syngeneic Model

2019 ◽  
Vol 20 (10) ◽  
pp. 2564 ◽  
Author(s):  
Clément Bailly ◽  
Sébastien Gouard ◽  
François Guérard ◽  
Benjamin Chalopin ◽  
Thomas Carlier ◽  
...  

Although positron emission tomography (PET) imaging with 18-Fluorodeoxyglucose (18F-FDG) is a promising technique in multiple myeloma (MM), the development of other radiopharmaceuticals seems relevant. CD138 is currently used as a standard marker for the identification of myeloma cells and could be used in phenotype tumor imaging. In this study, we used an anti-CD138 murine antibody (9E7.4) radiolabeled with copper-64 (64Cu) or zirconium-89 (89Zr) and compared them in a syngeneic mouse model to select the optimal tracers for MM PET imaging. Then, 9E7.4 was conjugated to TE2A-benzyl isothiocyanate (TE2A) and desferrioxamine (DFO) chelators for 64Cu and 89Zr labeling, respectively. 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 antibodies were evaluated by PET imaging and biodistribution studies in C57BL/KaLwRij mice bearing either 5T33-MM subcutaneous tumors or bone lesions and were compared to 18F-FDG-PET imaging. In biodistribution and PET studies, 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 displayed comparable good tumor uptake of subcutaneous tumors. On the bone lesions, PET imaging with 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 showed higher uptake than with 18F-FDG-PET. Comparison of both 9E7.4 conjugates revealed higher nonspecific bone uptakes of 89Zr-DFO-9E7.4 than 64Cu-TE2A-9E7.4. Because of free 89Zr’s tropism for bone when using 89Zr-anti-CD138, 64Cu-anti-CD138 antibody had the most optimal tumor-to-nontarget tissue ratios for translation into humans as a specific new imaging radiopharmaceutical agent in MM.

Author(s):  
Olwen Westerland ◽  
◽  
Ashik Amlani ◽  
Christian Kelly-Morland ◽  
Michal Fraczek ◽  
...  

Abstract Purpose Comparative data on the impact of imaging on management is lacking for multiple myeloma. This study compared the diagnostic performance and impact on management of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and whole-body magnetic resonance imaging (WBMRI) in treatment-naive myeloma. Methods Forty-six patients undergoing 18F-FDG PET/CT and WBMRI were reviewed by a nuclear medicine physician and radiologist, respectively, for the presence of myeloma bone disease. Blinded clinical and imaging data were reviewed by two haematologists in consensus and management recorded following clinical data ± 18F-FDG PET/CT or WBMRI. Bone disease was defined using International Myeloma Working Group (IMWG) criteria and a clinical reference standard. Per-patient sensitivity for lesion detection was established. McNemar test compared management based on clinical assessment ± 18F-FDG PET/CT or WBMRI. Results Sensitivity for bone lesions was 69.6% (32/46) for 18F-FDG PET/CT (54.3% (25/46) for PET component alone) and 91.3% (42/46) for WBMRI. 27/46 (58.7%) of cases were concordant. In 19/46 patients (41.3%) WBMRI detected more focal bone lesions than 18F-FDG PET/CT. Based on clinical data alone, 32/46 (69.6%) patients would have been treated. Addition of 18F-FDG PET/CT to clinical data increased this to 40/46 (87.0%) patients (p = 0.02); and WBMRI to clinical data to 43/46 (93.5%) patients (p = 0.002). The difference in treatment decisions was not statistically significant between 18F-FDG PET/CT and WBMRI (p = 0.08). Conclusion Compared to 18F-FDG PET/CT, WBMRI had a higher per patient sensitivity for bone disease. However, treatment decisions were not statistically different and either modality would be appropriate in initial staging, depending on local availability and expertise.


Author(s):  
K. VOET ◽  
B. VAN DEN BROECK ◽  
I. GOETHALS ◽  
F. OFFNER

The use of 18F-FDG PET/CT to evaluate patients with multiple myeloma. Detection of bone lesions are important to diagnose multiple myeloma. In this study we investigate the role of an 18F-FDG PET/CT exam. Fifteen newly diagnosed multiple myeloma patients were included in this retrospective study. A 18F-FDG PET/CT was performed at diagnosis and after induction therapy. The response of a treatment is examined by semi-quantitative parameters (standardised 18F-FDG uptake values) and volumetric parameters (metabolic tumor volume and total lesion glycolysis). The aim of this study is to evaluate the use of these parameters for response evaluation and risk assessment in multiple myeloma. The prognostic value of an increased metabolic activity of the spleen is also examined. All semi-quantitative and volumetric parameters in this study are useful for response evaluation. Lower values of maximum or mean standardized uptake values (SUVmax, SUVmean) and total lesion glycolysis at diagnosis are prognostic favourable. We could not prove prognostic relevance for a spleen to liver ratio. Due to the small study population, all these results have to be confirmed in a larger patient cohort. 18F-FDG PET/CT is a reliable technique for response evaluation and risk stratification in multiple myeloma. In the future semi-quantitative and volumetric parameters will probably be incorporated in the risk classification systems of multiple myeloma patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3492-3492
Author(s):  
Elena Zamagni ◽  
Cristina Nanni ◽  
Patrizia Tosi ◽  
Stefano Fanti ◽  
Delia Cangini ◽  
...  

Abstract Multiple myeloma (MM) is a malignant plasma cell disorder which involves the skeleton in more than 80% of patients at diagnosis. For almost four decades bone lesions have traditionally been detected by Whole Body X-Ray (WBXR) survey. Over the last years, newer methods of evaluation have been increasingly used for the detection of MM bone disease, including magnetic resonance imaging (MRI) of the spine. In comparison with WBXR, MRI has proven to be more sensitive, although its partial field of view (FOV) is a main limitation in clinical practice. 18F-FDG PET/CT is a non invasive and total body imaging method that may be usefully employed to explore bones and soft tissues in MM, to assess the degree and extent of active MM bone disease, as well as to evaluate response to therapy by distinguishing between active and inactive bone lesions. Aim of the present study was to compare WBXR survey, MRI and 18F-FDG PET/CT scanning in a series of 28 consecutive patients with newly diagnosed MM. Moreover, we compared post-treatment evaluation with MRI and 18F-FDG PET/CT with clinical response in 14/28 patients who received double autologous transplantation as up-front therapy for MM. All patients underwent WBXR, MRI and 18F-FDG PET/CT at baseline and 3 months after the second transplantation. Findings of 18 F-FDG PET/CT were compared to those of WBXR and MRI with respect to number and site of detected bone lesions. Results of comparison of 18 F-FDG PET/CT with WBXR at diagnosis were as follows: in 16/28 pts (57%) 18 F-FDG PET/CT detected more lesions, all of whom were located in the skeleton; notably, 9 of these 16 patients had a completely negative WBXR survey. In 12/28 pts (43%) both methods were superimposable. Results of comparison of 18 F-FDG PET/CT with MRI at diagnosis were as follows: in 7/28 pts (25%), 18 F-FDG PET/CT detected more lytic bone lesions which were all located out of the FOV of MRI (6 bone lesions, 1 soft tissue lesion); in 13/28 pts (46%) 18 F-FDG PET/CT and MRI detected the same number of lesions in the spine and pelvis; in 8/28 pts (29%) MRI detected an infiltrative pattern of the spine, without evidence of lytic lesions, whereas 18 F-FDG PET/CT was negative. Results of comparison of post-transplantation 18 F-FDG PET/CT and MRI with clinical response were as follows: 5 out of 12 patients with negative 18 F-FDG PET/CT were in clinical CR and the remaining 7 patients were in 3 PR. Only 7 out of 12 patients with negative 18 F-FDG PET/CT had normal MRI. In summary, in 57% of patients at diagnosis 18 F-FDG PET/CT was more sensitive than WBXR for the detection of lytic bone lesions. MRI of the spine was superior over 18 F-FDG PET/CT in 29% of patients, particularly with a diffuse bone marrow replacement. Based on these data, it can be concluded that careful evaluation of MM bone disease at diagnosis should include both MRI of the spine and 18 F- FDG PET/CT. More data are needed to understand the role of 18 F-FDG PET/CT in assessing response to treatment.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2399 ◽  
Author(s):  
Xiang Zhou ◽  
Alexander Dierks ◽  
Olivia Kertels ◽  
Samuel Samnick ◽  
Malte Kircher ◽  
...  

Utilizing 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT), we performed this pilot study to evaluate the link between cytogenetic/genomic markers and imaging patterns in relapsed/refractory (RR) multiple myeloma (MM). We retrospectively analyzed data of 24 patients with RRMM who were treated at our institution between November 2018 and February 2020. At the last relapse/progression, patients had been treated with a median of three (range 1–10) lines of therapy. Six (25%) patients showed FDG avid extramedullary disease without adjacency to bone. We observed significantly higher maximum standardized uptake values (SUVmax) in patients harboring del(17p) compared with those without del(17p) (p = 0.025). Moreover, a high SUVmax of >15 indicated significantly shortened progression-free survival (PFS) (p = 0.01) and overall survival (OS) (p = 0.0002). One female patient exhibited biallelic TP53 alteration, i.e., deletion and mutation, in whom an extremely high SUVmax of 37.88 was observed. In summary, this pilot study suggested a link between del(17p)/TP53 alteration and high SUVmax on 18F-FDG PET/CT in RRMM patients. Further investigations are highly warranted at this point.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5542-5542
Author(s):  
Nicola Giuliani ◽  
Silvia Valtorta ◽  
Martina Chiu ◽  
Denise Toscani ◽  
Andrea Sartori ◽  
...  

High glycolitic activity of multiple myeloma (MM) cells is the rationale for the use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both medullary and extramedullary disease. However, FDG-PET has some limitations, since there is a good portion of MM patients who are false-negative. Besides enhanced glycolysis, glutamine (Gln) addiction has been recently described as a metabolic feature of MM by our group. To sustain high Gln demand, MM cells increase the expression of several Gln transporters (ASCT2, SNAT1, LAT1) and are endowed with fast Gln uptake. Yet, at variance with other Gln-addicted cancers, the possible exploitation of Gln as a PET tracer in MM has never been assessed and was investigated in this study. To this purpose, we have firstly synthesized enantiopure (2S,4R)-4-Fluoroglutamine (4-FGln) and validated it as a Gln analogue in human MM cell lines (RPMI8226 and JJN3) comparing its uptake with that of 3H-labelled Gln. The intracellular levels of 4-FGln were determined by HPLC-MS/MS employing a HILIC gradient separation and multiple reaction monitoring (MRM) detection. Both Gln and 4-FGln were actively accumulated by MM cells and exhibited a strong reciprocal competition, pointing to shared transporters. Inhibition analysis revealed that ASCT2 was the major entry route of both compounds, with minor contributions from the other transporters. However, compared with Gln, 4-FGln exhibited higher affinity for both ASCT2 and LAT1 transporters. On the basis of these results, we then tested [18F]4-FGln uptake for MM detection by Positron Emission Tomography (PET) in two different in vivo murine models. Firstly, to investigate sensitivity of human MM to [18F]4-FGln in vivo, JJN3 cells were subcutaneously injected in immunodeficient NSG mice In this xenograft model, [18F]4-FGln- and[18F]FDG-PET scans were performed after plasmacytomas became palpable and repeated after one week. All the tumours were positive for [18F]FDG and displayed [18F]4-FGln uptake with Standard Uptake Values (SUV) of 1.21±1.9 and 0.99±0.07 after 2 weeks, respectively. Thereafter, the effect of bortezomib (BOR) was investigated to evaluate the potential use of [18F]4-FGln to monitor anti-MM treatment. Ten NGS mice were injected with JJN3 cells and, after 14 days, treated twice weekly with BOR, 1mg/kg, or vehicle for two weeks. PET scans were performed before and after 5 and 12 days of BOR treatment. As expected, BOR reduced tumour size as compared to vehicle. At the first post-BOR PET scan, [18F]4-FGln (SUV mean: pre 0.85±0.31; post 0.45±0.10, P<0.05), but not [18F]FDG (SUV mean: pre 0.97±0.38, post 0.75±0.14) was already significantly reduced: [18F]FDG and [18F]4-FGln uptake was reduced of 22 and 45% respectively. With both radiotracers, BOR treated animals displayed SUV mean values significantly lower than those of vehicle treated animals at post treatment PET (SUV means [18F ]FDG: BOR 0.75±0.14; vehicle 1.27±0.34, P<0.05; SUV mean [18F]4-FGln: BOR 0.45±0.10 ; vehicle: 0.73±0.18 ; P <0.05). Thereafter, to mimic BOR-resistant MM in a syngeneic mouse model, C57BL/6 mice were injected intravenously with Vk12598 cells obtained from transgenic Vk*MYC mice repeatedly treated with sub-optimal doses of BOR. Upon injection into C57BL/6 mice, Vk12598 cells colonize the BM without lytic lesions and extensively colonize the spleen generating an aggressive MM that brings animals to death within five weeks. PET scans were performed with [18F]4-FGln and [18F]FDG before Vk*MYC MM cells injection and after three, four and five weeks. Blood samples for M-spike evaluation were obtained in parallel. Four weeks after MM cells injection a significant increase of both [18F]4-FGln and [18F]FDG uptake was detected in spleens (SUV mean: 1.14±0.23, P=0.018; 0.94±0.24, P= 0.005). In both MM models, the volume of distribution of [18F]4-F-Gln did not overlap that of [18F]FDG. In conclusion, our data indicate that [18F]-(2S,4R)-4-Fluoroglutamine is a new potential PET tracer in pre-clinical MM models especially of extramedullary disease, either in a BOR-sensitive or in a BOR-resistant context, supporting the exploitation of Gln addiction for diagnostic purposes in MM patients. Disclosures Giuliani: Janssen: Research Funding.


2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Silvia Taralli ◽  
Romina Grazia Giancipoli ◽  
Carmelo Caldarella ◽  
Valentina Scolozzi ◽  
Sara Ricciardi ◽  
...  

Malignant pleural mesothelioma (MPM) is an aggressive malignancy, frequently diagnosed at locally-advanced/metastatic stages. Due to a very poor prognosis and limited treatment options, the need to identify new prognostic markers represents a great clinical challenge. The prognostic role of metabolic information derived from Positron Emission Tomography (PET) with 18F-Fluoro-deoxy-glucose (18F-FDG) has been investigated in different MPM settings, however with no definitive consensus. In this comprehensive review, the prognostic value of FDG-PET imaging exclusively performed at staging in MPM patients was evaluated, conducting a literature search on PubMed/MEDLINE from 2010 to 2020. From the 19 selected studies, despite heterogeneity in several aspects, staging FDG-PET imaging emerges as a valuable prognostic biomarker, with higher tumor uptake predictive of worse prognosis, and with volumetric metabolic parameters like Metabolic Tumor Volume, (MTV) and Total Lesion Glycolisis (TLG) performing better than SUVmax. However, PET uptake parameters were not always confirmed as independent prognostic factors, especially in patients previously treated with pleurodesis and with a non-epithelioid histotype. Future prospective studies in larger and clinically homogeneous populations, and using more standardized methods of PET images analysis, are needed to further validate the value of staging FDG-PET in the prognostic MPM stratification, with a potential impact on better patient-tailored treatment planning, in the perspective of personalized medicine.


2015 ◽  
Vol 40 (4) ◽  
pp. 291-296 ◽  
Author(s):  
Esther G.M. de Waal ◽  
Riemer H.J.A. Slart ◽  
Marnix J. Leene ◽  
Philip M. Kluin ◽  
Edo Vellenga

Sign in / Sign up

Export Citation Format

Share Document