scholarly journals High-Level Production of a Thermostable Mutant of Yarrowia lipolytica Lipase 2 in Pichia pastoris

2019 ◽  
Vol 21 (1) ◽  
pp. 279
Author(s):  
Qinghua Zhou ◽  
Zhixin Su ◽  
Liangcheng Jiao ◽  
Yao Wang ◽  
Kaixin Yang ◽  
...  

As a promising biocatalyst, Yarrowia lipolytica lipase 2 (YlLip2) is limited in its industrial applications due to its low thermostability. In this study, a thermostable YlLip2 mutant was overexpressed in Pichia pastoris and its half-life time was over 30 min at 80 °C. To obtain a higher protein secretion level, the gene dosage of the mutated lip2 gene was optimized and the lipase activity was improved by about 89%. Then, the YlLip2 activity of the obtained strain further increased from 482 to 1465 U/mL via optimizing the shaking flask culture conditions. Subsequently, Hac1p and Vitreoscilla hemoglobin (VHb) were coexpressed with the YlLip2 mutant to reduce the endoplasmic reticulum stress and enhance the oxygen uptake efficiency in the recombinant strains, respectively. Furthermore, high-density fermentations were performed in a 3 L bioreactor and the production of the YlLip2 mutant reached 9080 U/mL. The results demonstrated that the expression level of the thermostable YlLip2 mutant was predominantly enhanced via the combination of these strategies in P. pastoris, which forms a consolidated basis for its large-scale production and future industrial applications.

2019 ◽  
Vol 7 (10) ◽  
pp. 387 ◽  
Author(s):  
Monica Salamone ◽  
Aldo Nicosia ◽  
Giulio Ghersi ◽  
Marcello Tagliavia

Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.


2013 ◽  
Vol 1828 (9) ◽  
pp. 2238-2246 ◽  
Author(s):  
Piero Pingitore ◽  
Lorena Pochini ◽  
Mariafrancesca Scalise ◽  
Michele Galluccio ◽  
Kristina Hedfalk ◽  
...  

2017 ◽  
Vol 43 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Mahzan Md Tab ◽  
Noor Haza Fazlin Hashim ◽  
Nazalan Najimudin ◽  
Nor Muhammad Mahadi ◽  
Farah Diba Abu Bakar ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Liu ◽  
Yu Ling Qu ◽  
Gui Ru Dong ◽  
Jing Wang ◽  
Ching Yuan Hu ◽  
...  

β-carotene is a precursor of vitamin A and has multiple physiological functions. Producing β-carotene by microbial fermentation has attracted much attention to consumers’ preference for natural products. This study focused on improving β-carotene production by constructing codon-adapted genes and minimizing intermediate accumulation. The codon-adapted CarRA and CarB genes from the industrial strain of Blakeslea trispora were integrated into the genome of the Yarrowia lipolytica to construct YL-C0, the baseline strain for producing β-carotene. Thereafter, the β-carotene biosynthetic pathway’s metabolic balance was accurately regulated to reduce the intermediates’ accumulation. Notably, the β-carotene content increased by 21 times to reach 12.5 dry cell weight (DCW) mg/g when minimizing HMG-CoA and FPP accumulation. Further, we improved the expression levels of the CarRA and CarB genes to minimize the accumulation of phytoene and lycopene. Total production of β-carotene of 1.7 g/L and 21.6 mg/g DCW was achieved. These results reveal that the rate-limiting enzymes CarRA and CarB of B. trispora exhibited higher catalytic activity than the same enzymes from other microorganisms. Promoting metabolic balance by minimizing the accumulation of intermediates is a very effective strategy for increasing β-carotene. The β-carotene-producing strain constructed in this study has established the foundation for its potential use in industrial production. These successful engineering strategies also provide a foundation for large-scale production of other terpenoids.


Plant Disease ◽  
2002 ◽  
Vol 86 (8) ◽  
pp. 880-882 ◽  
Author(s):  
M. R. Pooler ◽  
K. A. Jacobs ◽  
M. Kramer

The redbud (Cercis sp.) is a popular ornamental small tree or shrub, valued commercially for its early spring bloom and adaptability to diverse environmental conditions. Despite these characteristics, large-scale production of redbud has been limited, due in part to their susceptibility to a fungal canker caused by Botryosphaeria ribis. We screened 711 plants in 11 Cercis taxa for response to inoculation with B. ribis. The taxa native to North America, C. canadensis and C. occidentalis, were more susceptible than Asian species. A logistic regression of the number of symptomatic plants 10 weeks postinoculation with taxa and size (stem diameter) as independent variables explained 41% of the variation. Sixteen percent was attributable to taxon effects and 36% was attributable to taxon-independent size effects. Size and taxon effects were not completely orthogonal, and taxa with larger mean stem diameters generally had higher percentages of symptomless plants. A high level of unexplained variation (59%) was found, and is likely due to intraspecific variation among seed lots. Comparisons of 11 seed lots of C. canadensis revealed significantly different proportions of diseased plants ranging from 52 to 92% after 10 weeks, but all plants eventually became diseased.


1998 ◽  
Vol 13 (10) ◽  
pp. 2950-2955 ◽  
Author(s):  
Yong Dong Jiang ◽  
Zhong Lin Wang ◽  
Fuli Zhang ◽  
Henry G. Paris ◽  
Christopher J. Summers

A forced hydrolysis technique is used for preparing Y2O3: Eu3+ powders at low processing temperatures. The technique uses yttrium oxide, europium oxide, and nitric acid and urea, and has the potential for large-scale production for industrial applications. Several experimental conditions have been examined to optimize the luminescence efficiency. The best result was found to be at 2 mol% Eu doping and a 2 h firing of 1400 °C. Microstructural information provided by x-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) have been applied to interpret the observed luminescent properties.


2018 ◽  
Vol 48 (9) ◽  
pp. 823-833 ◽  
Author(s):  
Rajkumar Paul ◽  
Selvarajan Karthik ◽  
Ponnusamy Vimalraj ◽  
Sankaranarayanan Meenakshisundaram ◽  
Perumal Kaliraj

Sign in / Sign up

Export Citation Format

Share Document