scholarly journals Kinetic Analysis of the Thermal Decomposition of Iron(III) Phosphates: Fe(NH3)2PO4 and Fe(ND3)2PO4

2020 ◽  
Vol 21 (3) ◽  
pp. 781
Author(s):  
Isabel Iglesias ◽  
José A. Huidobro ◽  
Belén F. Alfonso ◽  
Camino Trobajo ◽  
Aránzazu Espina ◽  
...  

The hydrothermal synthesis and both the chemical and structural characterization of a diamin iron phosphate are reported. A new synthetic route, by using n-butylammonium dihydrogen phosphate as a precursor, leads to the largest crystals described thus far for this compound. Its crystal structure is determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic system (Pnma space group, a = 10.1116(2) Å, b = 6.3652(1) Å, c = 7.5691(1) Å, Z = 4) at room temperature and, below 220 K, changes towards the monoclinic system P21/n, space group. The in situ powder X-ray thermo-diffraction monitoring for the compound, between room temperature and 1100 K, is also included. Thermal analysis shows that the solid is stable up to ca. 440 K. The kinetic analysis of thermal decomposition (hydrogenated and deuterated forms) is performed by using the isoconversional methods of Vyazovkin and a modified version of Friedman. Similar values for the kinetic parameters are achieved by both methods and they are checked by comparing experimental and calculated conversion curves.

2004 ◽  
Vol 19 (4) ◽  
pp. 378-384
Author(s):  
A. Rafalska-Lasocha ◽  
M. Grzywa ◽  
B. Włodarczyk-Gajda ◽  
W. Lasocha

The X-ray diffraction patterns of two organic acids 1-naphthalenesulfonic acid dihydrate and 2-naphthalenesulfonic acid hydrate were measured at room temperature. Complexes of these acids with 1,8-bis(dimethylamino)naphthalene (DMAN) were synthesized, purified and investigated by means of X-ray powder diffraction. 1-Naphthalenesulfonic acid dihydrate as well as its complex with 1,8-bis(dimethylamino)naphthalene crystallize in the monoclinic system with unit cell parameters refined to a=0.91531(8) nm, b=0.7919(1) nm, c=0.8184(1) nm, β=101.618(9)° space group P21/m (11) and a=1.7781(4) nm, b=2.0122(4) nm, c=1.2337(2) nm, β=96.54(3)°, space group C2/m (12), respectively. 2-Naphthalenesulfonic acid hydrate crystallizes in the orthorhombic system with a=2.2749(3) nm, b=0.7745(1) nm, c=0.591 36(9) nm, space group Pnma, whereas its complex with 1,8-bis(dimethylamino)naphthalene crystallizes in the triclinic system a=1.3969(6) nm, b=1.4292(5) nm, c=1.1741(6) nm, α=90.93(3)°, β=98.14(3)°, γ=113.93(3)°, space group P-1 (2).


2003 ◽  
Vol 18 (3) ◽  
pp. 266-268
Author(s):  
A. Rafalska-Łasocha ◽  
W. Łasocha

The X-ray powder diffraction patterns of two liquid aniline derivatives o-chloroaniline, and m-chloroaniline were measured at 250 °K in a low temperature chamber. Both compounds crystallize in the orthorhombic system with the unit cell parameters refined to a=1.8391(3) nm, b=1.0357(2) nm, c=0.6092(1) nm, space group Pmmm(47) and a=0.450 39(9) nm, b=1.9820(4) nm, c=1.2699(4) nm, space group Pcca(54) for o-chloroaniline and m-chloroaniline, respectively. Investigated at room temperature, 2,6-dichloroaniline crystallizes in the monoclinic system, space group P21/c(14), a=1.1329(2) nm, b=0.41093(8) nm, c=1.5445(3) nm, α=γ=90° β=99.96(2)°.


2005 ◽  
Vol 20 (1) ◽  
pp. 67-70
Author(s):  
B. Lasocha ◽  
M. Grzywa ◽  
W. Lasocha

X-ray diffraction investigations of two phenol derivatives - 2,2′-Thiobis(4-methyl-6-tert-butylphenol) and 2,2′-Methylenebis(4-methyl-6-tert-butylphenol) were carried out. Both compounds at room temperature have similar cell volume and the same number of molecules in an unit cell. However, 2,2′-Thiobis(4-methyl-6-tert-butylphenol) crystallizes in the monoclinic system with unit cell parameters refined to a=0.8278(2) nm, b=1.2968(4) nm, c=1.9493(7) nm, β=90.93(2)°, space group P21∕n(14), whereas 2,2′-Methylenebis(4-methyl-6-tert-butylphenol) crystallizes in the orthorhombic system with unit cell parameters refined to a=1.6203(5) nm, b=1.2827(5) nm, c=1.0197(3) nm, space group Pna21(33). The investigated C22H30O2S turned out to be a new polymorph of 2,2′-Thiobis(4-methyl-6-tert-butylphenol).


Chrysene crystallizes in the monoclinic system. By means of rotation, oscillation, and moving film photographs the following crystal data have been obtained:— a = 8·34 A, b = 6·18 A, c = 25·0 A, β = 115·8°. All the planes ( hkl ) are halved when h + k + l is odd and in addition all the ( h 0 l ) planes are halved. There are two space groups available, C 6 2 h (I2/ c ) and C 4 s (I c ). In what follows it will be shown that the former space group is the more probable. The measured density is 1·27 (at room temperature) giving 4 molecules of C 18 H 12 per unit cell. Molecular volume = 290 (A) 3 .


2003 ◽  
Vol 18 (2) ◽  
pp. 128-134 ◽  
Author(s):  
A. Le Bail ◽  
A.-M. Mercier

The crystal structures of the chiolite-related room temperature phases α-Na5M3F14 (MIII=Cr,Fe,Ga) are determined. For all of them, the space group is P21/n, Z=2; a=10.5096(3) Å, b=7.2253(2) Å, c=7.2713(2) Å, β=90.6753(7)° (M=Cr); a=10.4342(7) Å, b=7.3418(6) Å, c=7.4023(6) Å, β=90.799(5)° (M=Fe), and a=10.4052(1) Å, b=7.2251(1) Å, c=7.2689(1), β=90.6640(4)° (M=Ga). Rietveld refinements produce final RF factors 0.036, 0.033, and 0.035, and RWP factors, 0.125, 0.116, and 0.096, for MIII=Cr, Fe, and Ga, respectively. The MF6 polyhedra in the defective isolated perovskite-like layers deviate very few from perfect octahedra. Subtle octahedra tiltings lead to the symmetry decrease from the P4/mnc space group adopted by the Na5Al3F14 chiolite aristotype to the P21/n space group adopted by the title series. Facile twinning precluded till now the precise characterization of these compounds.


2013 ◽  
Vol 11 (7) ◽  
pp. 1225-1238
Author(s):  
Iliana Medina-Ramírez ◽  
Cynthia Floyd ◽  
Joel Mague ◽  
Mark Fink

AbstractThe reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2(1); (Me2GaOSitBuMe2)2(2); (Me2GaOSiEt3)2(3); (Me2InOSiPh3)2(4); (Me2InOSitBuMe2)2(5); (Me2InOSiEt3)2(6); (Me2GaSSiPh3)2(7); (Et2GaSSiPh3)2(8); (Me2GaSSiiPr3)2(9); (Et2GaSSiiPr3)2(10); (Me2InSSiPh3)3(11); (Me2InSSiiPr3)n(12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)–(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)–(10) GaS and (11)–(12) InS powders, respectively.


1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.


2021 ◽  
Vol 13 (1) ◽  
pp. 21-30
Author(s):  
O.K. Sharutina ◽  

By mixing solutions of tris(2-methoxy-5-bromophenyl)antimony and silver nitrate in a methanol : acetonitrile mixture (1:1 vol.), nitrato-O,O'-(acetonitrile)[tris(2-methoxy-5-bromophenyl)antimony]silver complex with the general formula [(C6H3ОMe-2-Br-5)3SbAg(μ2-NO3)(Ме3CN)]2•2[(C6H3ОMe-2-Br-5)3SbAgNO3(Ме3CN)] (1) has been obtained. An addition of silver nitrate solution in the methanol : acetonitrile mixture to the tris(2-methoxy-5-bromophenyl)antimony dioxane solution has led to the formation of a small amount of dark crystals of the ionic complex [(2-MeО-5-Br-C6H3)3SbAg(H2O)Sb(C6H3Br-5-OMe-2)3]+[(2-MeО-5-Br-C6H3)3SbAg(m-NO3)3 AgSb(C6H3Br-5-OMe-2)3]-×3C4H8O2 (2). Complexes 1 and 2 have been characterized by IR spectroscopy, and their structures have been determined by X-ray diffraction analysis. The IR spectra of complexes 1 and 2 contain the bands characterizing the Sb-O, Sb-C, С≡N-, and NO3-group band vibrations. X-ray diffraction analysis of the complexes has been carried out on an automatic four-circle D8 Quest Bruker diffractometer (МоКα radiation, λ = 0.71073 Å, graphite monochromator) at 293 K. Crystallographic characteristics of 1: triclinic, P-1 space group, a = 9.32(3), b = 17.50(7), c = 17.97(5) Å, a = 97.56(14), β = 92.90(19), g = 99.45(19) grad., V = 2859(16) Å3, Z = 2, rcalc = 2.069 g/cm3, 2: monoclinic, С2/с space group, a = 17.417(14), b = 21.041(15), c = 32.01(2) Å, a = 90, β = 97.79(3), g = 90 grad., V = 11624(15) Å3, Z = 4, rcalc = 2.006 g/cm3. In the monomeric and dimeric molecules of crystal 1, nitrate ligands are chelating and bridging, respectively. In the cation of complex 2, the silver atom is bonded to two antimony ligands, the third coordination site is occupied by a water molecule. In the dimeric anion there are one antimony ligand and three bridging nitrate groups surrounding each silver atom.


IUCrJ ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 595-607 ◽  
Author(s):  
K. S. Scheidl ◽  
H. S. Effenberger ◽  
T. Yagi ◽  
K. Momma ◽  
Ronald Miletich

The natural sII-type clathrasil chibaite [chemical formula SiO2·(M 12,M 16), where M x denotes a guest molecule] was investigated using single-crystal X-ray diffraction and Raman spectroscopy in the temperature range from 273 to 83 K. The O atoms of the structure at room temperature, which globally conforms to space group Fd{\overline 3}m [V = 7348.9 (17) Å3, a = 19.4420 (15) Å], have anomalous anisotropic displacement parameters indicating a static or dynamic disorder. With decreasing temperature, the crystal structure shows a continuous symmetry-lowering transformation accompanied by twinning. The intensities of weak superstructure reflections increase as temperature decreases. A monoclinic twinned superstructure was derived at 100 K [A2/n, V = 7251.0 (17) Å3, a′ = 23.7054 (2), b′ = 13.6861 (11), c′ = 23.7051 (2) Å, β′ = 109.47°]. The transformation matrix from the cubic to the monoclinic system is ai ′ = (½ 1 ½ / ½ 0 −½ / ½ −1 ½). The A2/n host framework has Si—O bond lengths and Si—O—Si angles that are much closer to known values for stable silicate-framework structures compared with the averaged Fd{\overline 3}m model. As suggested from band splitting observed in the Raman spectra, the [512]-type cages (one crystallographically unique in Fd{\overline 3}m, four different in A2/n) entrap the hydrocarbon species (CH4, C2H6, C3H8, i-C4H10). The [51264]-type cage was found to be unique in both structure types. It contains the larger hydrocarbon molecules C2H6, C3H8 and i-C4H10.


2006 ◽  
Vol 21 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Abderrahim Aatiq ◽  
My Rachid Tigha ◽  
Rabia Hassine ◽  
Ismael Saadoune

Crystallographic structures of two new orthophosphates Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 obtained by conventional solid state reaction techniques at 900 °C, were determined at room temperature from X-ray powder diffraction using Rietveld analysis. The two compounds belong to the Nasicon structural family. The space group is R3 for Ca0.50SbFe(PO4)3 and R3c for CaSb0.50Fe1.50(PO4)3. Hexagonal cell parameters for Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 are: a=8.257(1) Å, c=22.276(2) Å, and a=8.514(1) Å, c=21.871(2) Å, respectively. Ca2+ and vacancies in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3 are ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3, each Ca(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra. In [Ca]M1Sb0.50Fe1.50(PO4)3 compound (R3c space group), all M1 sites are occupied by Ca2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework.


Sign in / Sign up

Export Citation Format

Share Document