isoconversional methods
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 45)

H-INDEX

21
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 150
Author(s):  
Konstantin Osetrov ◽  
Mayya Uspenskaya ◽  
Vera Sitnikova

Nowadays, there is a widespread usage of sodium periodate as an oxidant for synthesizing gelatin–tannin hydrogels. The impact of iodine compounds could have a harmful effect on human health. The study focuses on the proposal of alternative oxidizing systems for tannin oxidation. Gelatin–tannin hydrogels were obtained based on the usage of H2O2/DMSO/KMnO4/KIO4 oxidants and characterized with sorption, thermal (TGA, DTG, DSC), mechanical, FTIR and other methods. The sorption experiments were carried out in a phosphate buffer (pH = 5.8/7.4/9) and distilled water and were investigated with Fick’s law and pseudosecond order equation. The pH dependence of materials in acid media indicates the possibility of further usage as stimuli-responsive systems for drug delivery. Thermal transitions demonstrate the variation of structure with melting (306 ÷ 319 °C) and glass transition temperatures (261 ÷ 301 °C). The activation energy of water evaporation was calculated by isoconversional methods (Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa) ranging from 4 ÷ 18 to 14 ÷ 38 kJ/mole and model-fitting (Coats–Redfern, Kennedy–Clark) methods at 24.7 ÷ 45.3 kJ/mole, indicating the smooth growth of values with extent of conversion. The network parameters of the hydrogels were established by modified Flory–Rehner and rubber elasticity theories, which demonstrated differences in values (5.96 ÷ 21.27·10−3 mol/cm3), suggesting the limitations of theories. The sorption capacity, tensile strength and permeability for water/oxygen indicate that these materials may find their application in field of biomaterials.


2021 ◽  
Author(s):  
Ahmad Ali Joraid ◽  
Rawda Mohammad Okasha ◽  
Mahdi A. Al-Maghrabi ◽  
Tarek H. Afifi ◽  
Christian Agatemor ◽  
...  

Abstract The objective of this work is to obtain the thermodynamic parameters, namely, the changes of enthalpy, Gibbs free energy, and the entropy of two degradation steps observed in three of a new family of organometallic dendrimers. The isoconversional Flynn-Wall-Ozawa (FWO) model was employed to calculate the effective activation energy and pre-exponential factor. The changes of enthalpy and the entropy was consistent with the activation energy, whereas the change of Gibbs free energy remains positive during the entire degradation process, implying that the degradation is non-spontaneous and thus requires external heat supply.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7877
Author(s):  
Maja Ivanovski ◽  
Aleksandra Petrovic ◽  
Irena Ban ◽  
Darko Goricanec ◽  
Danijela Urbancl

The torrefaction process upgrades biomass characteristics and produces solid biofuels that are coal-like in their properties. Kinetics analysis is important for the determination of the appropriate torrefaction condition to obtain the best utilization possible. In this study, the kinetics (Friedman (FR) and Kissinger–Akahira–Sunose (KAS) isoconversional methods of two final products of lignocellulosic feedstocks, miscanthus (Miscanthus x giganteus) and hops waste (Humulus Lupulus), were studied under different heating rates (10, 15, and 20 °C/min) using thermogravimetry (TGA) under air atmosphere as the main method to investigate. The results of proximate and ultimate analysis showed an increase in HHV values, carbon content, and fixed carbon content, followed by a decrease in the VM and O/C ratios for both torrefied biomasses, respectively. FTIR spectra confirmed the chemical changes during the torrefaction process, and they corresponded to the TGA results. The average Eα for torrefied miscanthus increased with the conversion degree for both models (25–254 kJ/mol for FR and 47–239 kJ/mol for the KAS model). The same trend was noticed for the torrefied hops waste samples; the values were within the range of 14–224 kJ/mol and 60–221 kJ/mol for the FR and KAS models, respectively. Overall, the Ea values for the torrefied biomass were much higher than for raw biomass, which was due to the different compositions of the torrefied material. Therefore, it can be concluded that both torrefied products can be used as a potential biofuel source.


2021 ◽  
Author(s):  
pragnesh N Dave ◽  
Ruksana Sirach ◽  
Riddhi Thakkar ◽  
M P Deshpande

Abstract Less sensitive high energetic materials (HEMs) are explored as a potential replacement of highly sensitive HEMs in propellants, and explosive applications. More research have been devoted to improve the thermal decomposition of such a less sensitive HEMs. Nanosize Cobalt ferrite (CoF) has been successfully synthesized using the co-precipitation method. Synthesis of less sensitive HEM 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one(NTO) and its size reduction using solvent-antisolvent method is successfully achieved. Effect of 5 % by weight CoF on the thermolysis of NTO and NTO with reduced size (r-NTO) has been studied using the simultaneous thermal analysis. Three isoconversional methods namely Flynn Ozawa Wall, Kissinger-Akahira-Sunose (KAS), and Starink are employed to evaluate the kinetic parameter of NTO, and r-NTO in the presence of CoF additive. It was found that both the addition of CoF as well as reducing size of NTO can decrease the thermal decomposition temperature of NTO, the later decreasing the thermal decomposition temperature to a good extent compared to former. However, the kinetic study using isoconversional methods suggested that in the presence of CoF additive, the activation energy of both NTO as well as n-NTO is increased.


2021 ◽  
Author(s):  
ahmed elbeih

Abstract Nanothermite colloid is a promising field of research used to enhance the characteristics of energetic materials. In this study, pre-treated surfaces of multiwall-carbon nanotubes (MWCNTs) were catalysed to help the deposition of a metal and the coating process by copper (Cu) nanoscale layer through electroless deposition. The formed hybrids coated by Cu were treated at 250°C to form MWCNTs coated by CuO. Isopropyl alcohol was used to suspend the coated MWCNTs with aluminium nanoparticles (120 nm) in order to form nano thermite colloid by ultrasonic technique. The presence of CuO layer plays the role of an active oxidizer for the Aluminum nanoparticles. The obtained colloid was incorporated and dispersed in 1,3,5-trinitro-1,3,5-triazinane (RDX). The influence of colloid on RDX decomposition kinetic was evaluated using the isoconversional methods (modified Kissinger-Akahira-Sunose (KAS) methods). The mean value of apparent activation energy was reduced by 37.5 %. This dramatic change in RDX decomposition ascribed trait to the nano-thermite colloid reactivity and the facile integration of colloidal thermite particles with the RDX.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1990
Author(s):  
Maryam Jouyandeh ◽  
Vahideh Akbari ◽  
Seyed Mohammad Reza Paran ◽  
Sébastien Livi ◽  
Luanda Lins ◽  
...  

We synthesized pristine mica (Mica) and N-octadecyl-N’-octadecyl imidazolium iodide (IM) modified mica (Mica-IM), characterized it, and applied it at 0.1–5.0 wt.% loading to prepare epoxy nanocomposites. Dynamic differential scanning calorimetry (DSC) was carried out for the analysis of the cure potential and kinetics of epoxy/Mica and epoxy/Mica-IM curing reaction with amine curing agents at low loading of 0.1 wt.% to avoid particle aggregation. The dimensionless Cure Index (CI) was used for qualitative analysis of epoxy crosslinking in the presence of Mica and Mica-IM, while qualitative cure behavior and kinetics were studied by using isoconversional methods. The results indicated that both Mica and Mica-IM improved the curability of epoxy system from a Poor to Good state when varying the heating rate in the interval of 5–15 °C min−1. The isoconversional methods suggested a lower activation energy for epoxy nanocomposites with respect to the blank epoxy; thus, Mica and Mica-IM improved crosslinking of epoxy. The higher order of autocatalytic reaction for epoxy/Mica-IM was indicative of the role of liquid crystals in the epoxide ring opening. The glass transition temperature for nanocomposites containing Mica and Mica-IM was also lower than the neat epoxy. This means that nanoparticles participated the reaction because of being reactive, which decelerated segmental motion of the epoxy chains. The kinetics of the thermal decomposition were evaluated for the neat and mica incorporated epoxy nanocomposites epoxy with varying Mica and Mica-IM amounts in the system (0.5, 2.0 and 5.0 wt.%) and heating rates. The epoxy/Mica-IM at 2.0 wt.% of nanoparticle showed the highest thermal stability, featured by the maximum value of activation energy devoted to the assigned system. The kinetics of the network formation and network degradation were correlated to demonstrate how molecular-level transformations can be viewed semi-experimentally.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4123
Author(s):  
Małgorzata Wzorek ◽  
Robert Junga ◽  
Ersel Yilmaz ◽  
Bohdan Bozhenko

In this study, the combustion of olive byproducts was investigated using the TG-FTIR technique. Different types of olive biomass were considered: twigs, leaves, olive-mill waste from the two-phase decanting method, and wastewater from the three-phase system. The reaction regions, ignition, and burnout temperatures at different heating rates were determined using TG/DTG analysis and the thermogravimetry results. Comprehensive combustion, ignition, burnout, and flammability indexes were also calculated. The highest combustion index values were obtained for waste from the three-phase system, followed by the two-phase decanting method, then with leaves and small twigs. The order of the index values indicated that the sample from the three-phase process ignited more quickly and yielded faster. The changes in activation energy calculated using different model-free isoconversional methods—Friedman, Ozawa–Flynn–Wall, and Kissinger–Akahira–Sunose—fell within the range of 130–140 kJ/kmol. FTIR analyses presented differences in the exhaust gas composition for specific combustion temperature ranges.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3796
Author(s):  
Mudassar Azam ◽  
Asma Ashraf ◽  
Saman Setoodeh Setoodeh Jahromy ◽  
Sajjad Miran ◽  
Nadeem Raza ◽  
...  

In connection to present energy demand and waste management crisis in Pakistan, refuse-derived fuel (RDF) is gaining importance as a potential co-fuel for existing coal fired power plants. This research focuses on the co-combustion of low-quality local coal with RDF as a mean to reduce environmental issues in terms of waste management strategy. The combustion characteristics and kinetics of coal, RDF, and their blends were experimentally investigated in a micro-thermal gravimetric analyzer at four heating rates of 10, 20, 30, and 40 °C/min to ramp the temperature from 25 to 1000 °C. The mass percentages of RDF in the coal blends were 10%, 20%, 30%, and 40%, respectively. The results show that as the RDF in blends increases, the reactivity of the blends increases, resulting in lower ignition temperatures and a shift in peak and burnout temperatures to a lower temperature zone. This indicates that there was certain interaction during the combustion process of coal and RDF. The activation energies of the samples were calculated using kinetic analysis based on Kissinger–Akahira–Sunnose (KAS) and Flynn–Wall–Ozawa (FWO), isoconversional methods. Both of the methods have produced closer results with average activation energy between 95–121 kJ/mol. With a 30% refuse-derived fuel proportion, the average activation energy of blends hit a minimum value of 95 kJ/mol by KAS method and 103 kJ/mol by FWO method.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3465
Author(s):  
José Airton de Mattos Carneiro-Junior ◽  
Giulyane Felix de de Oliveira ◽  
Carine Tondo Alves ◽  
Heloysa Martins Carvalho Andrade ◽  
Silvio Alexandre Beisl Vieira de Beisl Vieira de Melo ◽  
...  

Torrefaction has been investigated to improve the desirable properties of biomass as solid biofuel, usually used in natura as firewood in several countries. This paper has the main objective to present a broad characterization of the biomass Prosopis juliflora (P. juliflora), investigating its potential as a solid biofuel after its torrefaction process. The methodology was based on different procedures. The experimental runs were carried out at 230, 270, and 310 °C for 30 min, using a bench-scale torrefaction apparatus, with an inert atmosphere. In order to investigate the effect of temperature in constant time, torrefaction parameters were calculated, such as mass yield, energy yield, calorific value, base-to-acid ratio (B/A), and the alkaline index (AI). The physicochemical properties of the torrefied samples were determined and thermogravimetric analysis was used to determine the kinetic parameters at four different heating rates of 5, 10, 20, and 30 °C/min. Pyrolysis kinetics was investigated using the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) isoconversional methods. Highly thermally stable biofuels were obtained due to the great degradation of hemicellulose and cellulose during torrefaction at higher temperatures. The highest heating value (HHV) of the samples varied between 18.3 and 23.1 MJ/kg, and the energy yield between 81.1 and 96.2%. The results indicate that P. juliflora torrefied becomes a more attractive and competitive solid biofuel alternative in the generation of heat and energy in northeast Brazil.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3077
Author(s):  
Sergey Vyazovkin

The kinetics of thermally stimulated processes in the condensed phase is commonly analyzed by model-free techniques such as isoconversional methods. Oftentimes, this type of analysis is unjustifiably limited to probing the activation energy alone, whereas the preexponential factor remains unexplored. This article calls attention to the importance of determining the preexponential factor as an integral part of model-free kinetic analysis. The use of the compensation effect provides an efficient way of evaluating the preexponential factor for both single- and multi-step kinetics. Many effects observed experimentally as the reaction temperature shifts usually involve changes in both activation energy and preexponential factor and, thus, are better understood by combining both parameters into the rate constant. A technique for establishing the temperature dependence of the rate constant by utilizing the isoconversional values of the activation energy and preexponential factor is explained. It is stressed that that the experimental effects that involve changes in the preexponential factor can be traced to the activation entropy changes that may help in obtaining deeper insights into the process kinetics. The arguments are illustrated by experimental examples.


Sign in / Sign up

Export Citation Format

Share Document