scholarly journals Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study

2020 ◽  
Vol 21 (6) ◽  
pp. 2181 ◽  
Author(s):  
Chao Feng ◽  
Shufen Liu ◽  
Hao Zhang ◽  
Renchu Guan ◽  
Dan Li ◽  
...  

With recent advances in single-cell RNA sequencing, enormous transcriptome datasets have been generated. These datasets have furthered our understanding of cellular heterogeneity and its underlying mechanisms in homogeneous populations. Single-cell RNA sequencing (scRNA-seq) data clustering can group cells belonging to the same cell type based on patterns embedded in gene expression. However, scRNA-seq data are high-dimensional, noisy, and sparse, owing to the limitation of existing scRNA-seq technologies. Traditional clustering methods are not effective and efficient for high-dimensional and sparse matrix computations. Therefore, several dimension reduction methods have been introduced. To validate a reliable and standard research routine, we conducted a comprehensive review and evaluation of four classical dimension reduction methods and five clustering models. Four experiments were progressively performed on two large scRNA-seq datasets using 20 models. Results showed that the feature selection method contributed positively to high-dimensional and sparse scRNA-seq data. Moreover, feature-extraction methods were able to promote clustering performance, although this was not eternally immutable. Independent component analysis (ICA) performed well in those small compressed feature spaces, whereas principal component analysis was steadier than all the other feature-extraction methods. In addition, ICA was not ideal for fuzzy C-means clustering in scRNA-seq data analysis. K-means clustering was combined with feature-extraction methods to achieve good results.

2021 ◽  
Author(s):  
Combiz Khozoie ◽  
Nurun Fancy ◽  
Mahdi Moradi Marjaneh ◽  
Alan E. Murphy ◽  
Paul M. Matthews ◽  
...  

Advances in single-cell RNA-sequencing technology over the last decade have enabled exponential increases in throughput: datasets with over a million cells are becoming commonplace. The burgeoning scale of data generation, combined with the proliferation of alternative analysis methods, led us to develop the scFlow toolkit and the nf-core/scflow pipeline for reproducible, efficient, and scalable analyses of single-cell and single-nuclei RNA-sequencing data. The scFlow toolkit provides a higher level of abstraction on top of popular single-cell packages within an R ecosystem, while the nf-core/scflow Nextflow pipeline is built within the nf-core framework to enable compute infrastructure-independent deployment across all institutions and research facilities. Here we present our flexible pipeline, which leverages the advantages of containerization and the potential of Cloud computing for easy orchestration and scaling of the analysis of large case/control datasets by even non-expert users. We demonstrate the functionality of the analysis pipeline from sparse-matrix quality control through to insight discovery with examples of analysis of four recently published public datasets and describe the extensibility of scFlow as a modular, open-source tool for single-cell and single nuclei bioinformatic analyses.


2017 ◽  
Author(s):  
Dongfang Wang ◽  
Jin Gu

AbstractSingle cell RNA sequencing (scRNA-seq) is a powerful technique to analyze the transcriptomic heterogeneities in single cell level. It is an important step for studying cell sub-populations and lineages based on scRNA-seq data by finding an effective low-dimensional representation and visualization of the original data. The scRNA-seq data are much noiser than traditional bulk RNA-Seq: in the single cell level, the transcriptional fluctuations are much larger than the average of a cell population and the low amount of RNA transcripts will increase the rate of technical dropout events. In this study, we proposed VASC (deep Variational Autoencoder for scRNA-seq data), a deep multi-layer generative model, for the unsupervised dimension reduction and visualization of scRNA-seq data. It can explicitly model the dropout events and find the nonlinear hierarchical feature representations of the original data. Tested on twenty datasets, VASC shows superior performances in most cases and broader dataset compatibility compared with four state-of-the-art dimension reduction methods. Then, for a case study of pre-implantation embryos, VASC successfully re-establishes the cell dynamics and identifies several candidate marker genes associated with the early embryo development.


2018 ◽  
Author(s):  
Etienne Becht ◽  
Charles-Antoine Dutertre ◽  
Immanuel W. H. Kwok ◽  
Lai Guan Ng ◽  
Florent Ginhoux ◽  
...  

AbstractUniform Manifold Approximation and Projection (UMAP) is a recently-published non-linear dimensionality reduction technique. Another such algorithm, t-SNE, has been the default method for such task in the past years. Herein we comment on the usefulness of UMAP high-dimensional cytometry and single-cell RNA sequencing, notably highlighting faster runtime and consistency, meaningful organization of cell clusters and preservation of continuums in UMAP compared to t-SNE.


2020 ◽  
Vol 3 (1) ◽  
pp. 339-364 ◽  
Author(s):  
Brian Hie ◽  
Joshua Peters ◽  
Sarah K. Nyquist ◽  
Alex K. Shalek ◽  
Bonnie Berger ◽  
...  

Single-cell RNA sequencing (scRNA-seq) has provided a high-dimensional catalog of millions of cells across species and diseases. These data have spurred the development of hundreds of computational tools to derive novel biological insights. Here, we outline the components of scRNA-seq analytical pipelines and the computational methods that underlie these steps. We describe available methods, highlight well-executed benchmarking studies, and identify opportunities for additional benchmarking studies and computational methods. As the biochemical approaches for single-cell omics advance, we propose coupled development of robust analytical pipelines suited for the challenges that new data present and principled selection of analytical methods that are suited for the biological questions to be addressed.


Author(s):  
Combiz Khozoie ◽  
Nurun Fancy ◽  
Mahdi M. Marjaneh ◽  
Alan E. Murphy ◽  
Paul M. Matthews ◽  
...  

Advances in single-cell RNA-sequencing technology over the last decade have enabled exponential increases in throughput:   datasets with over a million cells are becoming commonplace.   The burgeoning scale of data generation, combined with the proliferation of alternative analysis methods,  led us to develop the scFlow toolkit and the nf-core/scflow pipeline for reproducible, efficient, and scalable analyses of single-cell and single-nuclei RNA-sequencing data.  The scFlow toolkit provides a higher level of abstraction on top of popular single-cell packages within an R ecosystem, while the nf-core/scflow Nextflow pipeline is built within the nf-core framework to enable compute infrastructure-independent deployment across all institutions and research facilities.  Here we present our flexible pipeline, which leverages the advantages of containerization and the potential of Cloud computing for easy orchestration and scaling of the analysis of large case/control datasets by even non-expert users.  We demonstrate the functionality of the analysis pipeline from sparse-matrix quality control through to insight discovery with examples of analysis of four recently published public datasets and describe the extensibility of scFlow as a modular, open-source tool for single-cell and single nuclei bioinformatic analyses.


2019 ◽  
Author(s):  
Svetlana Ovchinnikova ◽  
Simon Anders

AbstractDimension-reduction methods, such as t-SNE or UMAP, are widely used when exploring high-dimensional data describing many entities, e.g., RNA-seq data for many single cells. However, dimension reduction is commonly prone to introducing artefacts, and we hence need means to see where a dimension-reduced embedding is a faithful representation of the local neighbourhood and where it is not.We present Sleepwalk, a simple but powerful tool that allows the user to interactively explore an embedding, using colour to depict original or any other distances from all points to the cell under the mouse cursor. We show how this approach not only highlights distortions, but also reveals otherwise hidden characteristics of the data, and how Sleep-walk’s comparative modes help integrate multi-sample data and understand differences between embedding and preprocessing methods. Sleepwalk is a versatile and intuitive tool that unlocks the full power of dimension reduction and will be of value not only in single-cell RNA-seq but also in any other area with matrix-shaped big data.


2017 ◽  
Author(s):  
Haejoon (Ellen) Kwon ◽  
Jean Fan ◽  
Peter Kharchenko

AbstractRecent developments in technological tools such as next generation sequencing along with peaking interest in the study of single cells has enabled single-cell RNA-sequencing, in which whole transcriptomes are analyzed on a single-cell level. Studies, however, have been hindered by the ability to effectively analyze these single cell RNA-seq datasets, due to the high-dimensional nature and intrinsic noise in the data. While many techniques have been introduced to reduce dimensionality of such data for visualization and subpopulation identification, the utility to identify new cellular subtypes in a reliable and robust manner remains unclear. Here, we compare dimensionality reduction visualization methods including principle component analysis and t-stochastic neighbor embedding along with various distance metric modifications to visualize single-cell RNA-seq datasets, and assess their performance in identifying known cellular subtypes. Our results suggest that selecting variable genes prior to analysis on single-cell RNA-seq data is vital to yield reliable classification, and that when variable genes are used, the choice of distance metric modification does not particularly influence the quality of classification. Still, in order to take advantage of all the gene expression information, alternative methods must be used for a reliable classification.


Author(s):  
Combiz Khozoie ◽  
Nurun Fancy ◽  
Mahdi Moradi Marjaneh ◽  
Alan E. Murphy ◽  
Paul M. Matthews ◽  
...  

Advances in single-cell RNA-sequencing technology over the last decade have enabled exponential increases in throughput:   datasets with over a million cells are becoming commonplace.   The burgeoning scale of data generation, combined with the proliferation of alternative analysis methods,  led us to develop the scFlow toolkit and the nf-core/scflow pipeline for reproducible, efficient, and scalable analyses of single-cell and single-nuclei RNA-sequencing data.  The scFlow toolkit provides a higher level of abstraction on top of popular single-cell packages within an R ecosystem, while the nf-core/scflow Nextflow pipeline is built within the nf-core framework to enable compute infrastructure-independent deployment across all institutions and research facilities.  Here we present our flexible pipeline, which leverages the advantages of containerization and the potential of Cloud computing for easy orchestration and scaling of the analysis of large case/control datasets by even non-expert users.  We demonstrate the functionality of the analysis pipeline from sparse-matrix quality control through to insight discovery with examples of analysis of four recently published public datasets and describe the extensibility of scFlow as a modular, open-source tool for single-cell and single nuclei bioinformatic analyses.


Sign in / Sign up

Export Citation Format

Share Document