scholarly journals Molecular Aspects and Treatment of Iron Deficiency in the Elderly

2020 ◽  
Vol 21 (11) ◽  
pp. 3821
Author(s):  
Antonino Davide Romano ◽  
Annalisa Paglia ◽  
Francesco Bellanti ◽  
Rosanna Villani ◽  
Moris Sangineto ◽  
...  

Iron deficiency (ID) is the most frequent nutritional deficiency in the whole population worldwide, and the second most common cause of anemia in the elderly. The prevalence of anemia is expecting to rise shortly, because of an ageing population. Even though WHO criteria define anemia as a hemoglobin serum concentration <12 g/dL in women and <13 g/dL in men, several authors propose different and specific cut-off values for the elderly. Anemia in aged subjects impacts health and quality of life, and it is associated with several negative outcomes, such as longer time of hospitalization and a higher risk of disability. Furthermore, it is an independent risk factor of increased morbidity and mortality. Even though iron deficiency anemia is a common disorder in older adults, it should be not considered as a normal ageing consequence, but a sign of underlying dysfunction. Relating to the molecular mechanism in Iron Deficiency Anemia (IDA), hepcidin has a key role in iron homeostasis. It downregulates the iron exporter ferroportin, inhibiting both iron absorption and release. IDA is frequently dependent on blood loss, especially caused by gastrointestinal lesions. Thus, a diagnostic algorithm for IDA should include invasive investigation such as endoscopic procedures. The treatment choice is influenced by the severity of anemia, underlying conditions, comorbidities, and the clinical state of the patient. Correction of anemia and iron supplementation should be associated with the treatment of the causal disease.

2018 ◽  
Vol 115 (12) ◽  
pp. 3000-3005 ◽  
Author(s):  
Benjamin H. Hudson ◽  
Andrew T. Hale ◽  
Ryan P. Irving ◽  
Shenglan Li ◽  
John D. York

Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 647-650 ◽  
Author(s):  
Anne Lenoir ◽  
Jean-Christophe Deschemin ◽  
Léon Kautz ◽  
Andrew J. Ramsay ◽  
Marie-Paule Roth ◽  
...  

Abstract Hepcidin is the master regulator of iron homeostasis. In the liver, iron-dependent hepcidin activation is regulated through Bmp6 and its membrane receptor hemojuvelin (Hjv), whereas, in response to iron deficiency, hepcidin repression seems to be controlled by a pathway involving the serine protease matriptase-2 (encoded by Tmprss6). To determine the relationship between Bmp6 and matriptase-2 pathways, Tmprss6−/− mice (characterized by increased hepcidin levels and anemia) and Bmp6−/− mice (exhibiting severe iron overload because of hepcidin deficiency) were intercrossed. We showed that loss of Bmp6 decreased hepcidin levels; increased hepatic iron; and, importantly, corrected hematologic abnormalities in Tmprss6−/− mice. This finding suggests that elevated hepcidin levels in patients with familial iron-refractory, iron-deficiency anemia are the result of excess signaling through the Bmp6/Hjv pathway.


Author(s):  
Н. О. Ховасова ◽  
А. В. Наумов ◽  
О. Н. Ткачева

Анемия у пожилых пациентов может рассматриваться как гериатрический синдром, ухудшающий качество жизни, функциональный статус, снижающий автономность и влияющий на прогноз. Анемия связана с другими гериатрическими синдромами, такими как старческая астения, саркопения, падения и переломы, дефицит витамина D , деменция и другие. Наиболее распространенной является железодефицитная анемия. Чаще всего у лиц пожилого возраста причины ее развития - хронические кровопотери и синдром мальнутриции. Лабораторными критериями, подтверждающими железодефицитную анемию, являются снижение гемоглобина, микроцитоз, низкое сывороточное железо и ферритин. Это является основанием для назначения препаратов железа, среди которых выделяют двух-и трехвалентные (пероральные и парентеральные). Трехвалентные препараты железа на основе железа (III) гидроксид полимальтозного комлекса наиболее предпочтительны у пациентов пожилого возраста, так как обладают лучшей переносимостью и меньшей частотой побочных эффектов при сопоставимой эффективности с двухвалентными препаратами. Anemia in older patients can be seen as a geriatric syndrome that impairs quality of life, functional status, reduces autonomy, and affects prognosis. Anemia is associated with other geriatric syndrome such as frailty, sarcopenia, falls and fractures, vitamin D deficiency, dementia and others. Iron deficiency anemia is the most common. Most often in older persons, the causes of its development are chronic blood loss and malnutrition. Laboratory criteria confirming iron deficiency anemia are hemoglobin reduction, microcytosis, low serum iron and ferritin. This is the basis for the administration of iron preparations, among which two- and threevalent ones are isolated. Trivalent iron preparations are most preferred in older patients because they have better tolerance and less frequency of side effects with comparable efficacy with divalent preparations.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 429-429
Author(s):  
Daniel F Wallace ◽  
Cameron J McDonald ◽  
Eriza S Secondes ◽  
Lesa Ostini ◽  
Gautam Rishi ◽  
...  

Abstract Iron deficiency and iron overload are common clinical conditions that impact on the health and wellbeing of up to 30% of the world’s population. Understanding mechanisms regulating iron homeostasis will provide improved strategies for treating these disorders. The liver-expressed proteins matriptase-2 (encoded by TMPRSS6), HFE and transferrin receptor 2 (TFR2) play important and opposing roles in systemic iron homeostasis by regulating expression of the iron regulatory hormone hepcidin. Mutations in TMPRSS6 lead to iron refractory iron deficiency anemia, whereas mutations in HFE and TFR2 lead to the iron overload disorder hereditary hemochromatosis. To elucidate the competing roles of these hepcidin regulators, we created mice lacking matriptase-2, Hfe and Tfr2. Tmprss6 -/-/Hfe-/-/Tfr2-/- mice had iron deficiency anemia resulting from hepatic hepcidin over-expression and activation of Smad1/5/8, indicating that matriptase-2 predominates over Hfe and Tfr2 in hepcidin regulation. Surprisingly, this anemia was more severe than in the Tmprss6-/- mice, demonstrated by more extensive alopecia, lower hematocrit and significant extramedullary erythropoiesis in the spleen. There was increased expression of erythroid-specific genes in the spleens of Tmprss6-/-/Hfe-/-/Tfr2-/- mice, consistent with the extramedullary erythropoiesis. Expression of Tfr2 but not Hfe in the spleen was increased in the Tmprss6-/- mice compared to wild type and correlated with the expression of erythroid genes, suggesting that Tfr2 is expressed in erythroid cells. Further analysis of gene expression in the bone marrow suggests that the loss of Tfr2 in the erythroid cells of Tmprss6-/-/Hfe-/-/Tfr2-/- mice causes a delay in the differentiation process leading to a more severe phenotype. In conclusion, our results indicate that Hfe and Tfr2 act upstream of matriptase-2 in hepcidin regulation or in a way that is overridden when matriptase-2 is deleted. These results indicate that inhibition of matriptase-2 would be useful in the treatment of iron overload conditions such as hereditary hemochromatosis. We have also identified a novel role for Tfr2 in erythroid differentiation that is separate from its canonical role as a regulator of iron homeostasis in the liver. This important role of Tfr2 in erythropoiesis only becomes apparent during conditions of iron restriction. Our results provide novel insights into mechanisms regulating and linking iron homeostasis and erythropoiesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document