scholarly journals Assessing Advantages and Drawbacks of Rapidly Generated Ultra-Large 3D Breast Cancer Spheroids: Studies with Chemotherapeutics and Nanoparticles

2020 ◽  
Vol 21 (12) ◽  
pp. 4413 ◽  
Author(s):  
Austin R. Holub ◽  
Anderson Huo ◽  
Kavil Patel ◽  
Vishal Thakore ◽  
Pranav Chhibber ◽  
...  

Traditionally, two-dimensional (2D) monolayer cell culture models have been used to study in vitro conditions for their ease of use, simplicity and low cost. However, recently, three-dimensional (3D) cell culture models have been heavily investigated as they provide better physiological relevance for studying various disease behaviors, cellular activity and pharmaceutical interactions. Typically, small-sized tumor spheroid models (100–500 μm) are used to study various biological and physicochemical activities. Larger, millimetric spheroid models are becoming more desirable for simulating native tumor microenvironments (TMEs). Here, we assess the use of ultra-large spheroid models (~2000 μm) generated from scaffolds made from a nozzle-free, ultra-high resolution printer; these models are explored for assessing chemotherapeutic responses with molecular doxorubicin (DOX) and two analogues of DoxilⓇ (Dox-NPⓇ, DoxovesTM) on MDA-MB-231 and MCF-7 breast cancer cell lines. To provide a comparative baseline, small spheroid models (~500 μm) were developed using a self-aggregation method of MCF-7 breast cancer cell lines, and underwent similar drug treatments. Analysis of both large and small MCF-7 spheroids revealed that Dox-NP tends to have the highest level of inhibition, followed by molecular doxorubicin and then Doxoves. The experimental advantages and drawbacks of using these types of ultra-large spheroids for cancer research are discussed.

2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


2000 ◽  
Vol 2 (S1) ◽  
Author(s):  
CJ Pogson ◽  
CMW Chan ◽  
L-A Martin ◽  
GPH Gui ◽  
M Dowsett

Author(s):  
Muhammad Luqman Nordin ◽  
Arifah Abdul Kadir ◽  
Zainul Amiruddin Zakaria ◽  
Rasedee Abdullah ◽  
Muhammad Nazrul Hakim Abdullah

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5577 ◽  
Author(s):  
Mohadeseh Hasanpourghadi ◽  
Nazia Abdul Majid ◽  
Mohd Rais Mustafa

Combination Index (CI) analysis suggested that MBIC and doxorubicin synergistically inhibited up to 97% of cell proliferation in ER+/PR+MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. Moreover, treatment of the breast cancer cells with the combined drugs resulted in lower IC50 values in contrast to the individual drug treatment. Small noncoding microRNAs (miRNA) may function as non-mutational gene regulators at post-transcriptional level of protein synthesis. In the present study, the effect of the combined treatment of MBIC and doxorubicin on the expression level of several miRNAs including miR-34a, miR-146a, miR-320a and miR-542 were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. These miRNAs have the potential to alter the protein level of survivin, the anti-apoptotic protein and reduce the metastatic activity in human breast cancer cell lines by interfering with the nuclear accumulation of NF-κB. Our results demonstrated the several fold changes in expression of miRNAs, which is drug and cell line dependent. This finding demonstrated a functional synergistic network between miR-34a, miR-320a and miR-542 that are negatively involved in post-transcriptional regulation of survivin in MCF-7 cells. While in MDA-MB-231 cells, changes in expression level of miR-146a was correlated with inhibition of the nuclear translocation of NF-κB. The overall result suggested that alteration in protein level and location of survivin and NF-κB by miR-34a, miR-320a, miR-146a and miR-542, remarkably influenced the synergistic enhancement of combined MBIC and doxorubicin in treatment of aggressive and less aggressive human breast cancer cell lines.


2018 ◽  
Vol 500 (4) ◽  
pp. 860-865 ◽  
Author(s):  
Fahimeh Aghapour ◽  
Ali Akbar Moghadamnia ◽  
Andrea Nicolini ◽  
Seydeh Narges Mousavi Kani ◽  
Ladan Barari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document