cell culture models
Recently Published Documents


TOTAL DOCUMENTS

512
(FIVE YEARS 156)

H-INDEX

48
(FIVE YEARS 8)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 190
Author(s):  
Mélanie A. G. Barbosa ◽  
Cristina P. R. Xavier ◽  
Rúben F. Pereira ◽  
Vilma Petrikaitė ◽  
M. Helena Vasconcelos

Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union’s regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.


Author(s):  
Irmak Ayvaz ◽  
Dilara Sunay ◽  
Ece Sariyar ◽  
Esra Erdal ◽  
Zeynep Firtina Karagonlar

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2979
Author(s):  
Lin Gao ◽  
Jiawei Yuan ◽  
Yuhuan Cheng ◽  
Mengling Chen ◽  
Genhua Zhang ◽  
...  

Numerous natural compounds are considered as potential therapeutic agents against alcohol-induced liver disease (ALD). Research shows that selenium (Se) has a variety of bioactivities, including liver protecting ability. The present study based on in vitro cell culture models and in vivo mouse models was aimed at examining the contribution of selenomethionine (SeMet)-dominated Se-enriched peanut protein (SePP) to liver protection. SeMet and especially SePP reversed cell viability and cell death, inhibited ethanol induced CYP2E1 activation, decreased reactive oxygen species level, and restored GSH level. Hence, SeMet-dominated SePP alleviates alcohol-induced AML-12 cytotoxicity by suppressing oxidative stress. The p38-dependent mechanism was found to be responsible for SePP-induced Nrf-2 activation. Furthermore, supplementation with SePP and SeMet regulated lipid metabolism and reduced oxidative stress, minimizing liver damage in mice. Selenomethionine-dominated SePP possesses potential therapeutic properties and can be used to treat ALD through the suppression of oxidative stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yining Wang ◽  
Pengfei Li ◽  
Sajjan Rajpoot ◽  
Uzma Saqib ◽  
Peifa Yu ◽  
...  

AbstractHuman coronavirus NL63 (HCoV-NL63) mainly affects young children and immunocompromised patients, causing morbidity and mortality in a subset of patients. Since no specific treatment is available, this study aims to explore the anti-SARS-CoV-2 agents including favipiravir and remdesivir for treating HCoV-NL63 infection. We first successfully modelled the 3D structure of HCoV-NL63 RNA-dependent RNA polymerase (RdRp) based on the experimentally solved SARS-CoV-2 RdRp structure. Molecular docking indicated that favipiravir has similar binding affinities to SARS-CoV-2 and HCoV-NL63 RdRp with LibDock scores of 75 and 74, respectively. The LibDock scores of remdesivir to SARS-CoV-2 and HCoV-NL63 were 135 and 151, suggesting that remdesivir may have a higher affinity to HCoV-NL63 compared to SARS-CoV-2 RdRp. In cell culture models infected with HCoV-NL63, both favipiravir and remdesivir significantly inhibited viral replication and production of infectious viruses. Overall, remdesivir compared to favipiravir is more potent in inhibiting HCoV-NL63 in cell culture. Importantly, there is no evidence of resistance development upon long-term exposure to remdesivir. Furthermore, combining favipiravir or remdesivir with the clinically used antiviral cytokine interferon-alpha resulted in synergistic effects. These findings provided a proof-of-concept that anti-SARS-CoV-2 drugs, in particular remdesivir, have the potential to be repurposed for treating HCoV-NL63 infection.


2021 ◽  
Vol 22 (23) ◽  
pp. 12994
Author(s):  
Malik Aydin ◽  
Jana Dietrich ◽  
Joana Witt ◽  
Maximiliane S. C. Finkbeiner ◽  
Jonas J.-H. Park ◽  
...  

There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nina Cintron Pregosin ◽  
Robert Bronstein ◽  
Sandeep K. Mallipattu

Kidney disease is an epidemic that affects more than 600 million people worldwide. The socioeconomic impacts of the disease disproportionately affect Hispanic and non-Hispanic Black Americans, making the disease an issue of social inequality. The urgency of this situation has only become worse during the COVID-19 pandemic, as those who are hospitalized for COVID-19 have an increased risk of kidney failure. For researchers, the kidney is a complex organ that is difficult to accurately model and understand. Traditional cell culture models are not adequate for studying the functional intricacies of the kidney, but recent experiments have offered improvements for understanding these systems. Recent progress includes organoid modeling, 3D bioprinting, decellularization, and microfluidics. Here, we offer a review of the most recent advances in kidney bioengineering.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257724
Author(s):  
Stefan J. A. Remmers ◽  
Bregje W. M. de Wildt ◽  
Michelle A. M. Vis ◽  
Eva S. R. Spaander ◽  
Rob B. M. de Vries ◽  
...  

Drug research with animal models is expensive, time-consuming and translation to clinical trials is often poor, resulting in a desire to replace, reduce, and refine the use of animal models. One approach to replace and reduce the use of animal models is to use in vitro cell-culture models. To study bone physiology, bone diseases and drugs, many studies have been published using osteoblast-osteoclast co-cultures. The use of osteoblast-osteoclast co-cultures is usually not clearly mentioned in the title and abstract, making it difficult to identify these studies without a systematic search and thorough review. As a result, researchers are all developing their own methods, leading to conceptually similar studies with many methodological differences and, as a consequence, incomparable results. The aim of this study was to systematically review existing osteoblast-osteoclast co-culture studies published up to 6 January 2020, and to give an overview of their methods, predetermined outcome measures (formation and resorption, and ALP and TRAP quantification as surrogate markers for formation and resorption, respectively), and other useful parameters for analysis. Information regarding these outcome measures was extracted and collected in a database, and each study was further evaluated on whether both the osteoblasts and osteoclasts were analyzed using relevant outcome measures. From these studies, additional details on methods, cells and culture conditions were extracted into a second database to allow searching on more characteristics. The two databases presented in this publication provide an unprecedented amount of information on cells, culture conditions and analytical techniques for using and studying osteoblast-osteoclast co-cultures. They allow researchers to identify publications relevant to their specific needs and allow easy validation and comparison with existing literature. Finally, we provide the information and tools necessary for others to use, manipulate and expand the databases for their needs.


Author(s):  
Minh Anh Thu Phan ◽  
Michele C. Madigan ◽  
Fiona Stapleton ◽  
Mark Willcox ◽  
Blanka Golebiowski

2021 ◽  
Vol 178 ◽  
pp. 113993
Author(s):  
Maria Helena Macedo ◽  
Ana Baião ◽  
Soraia Pinto ◽  
Andreia S. Barros ◽  
Helena Almeida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document