scholarly journals Experimental Models in Neovascular Age Related Macular Degeneration

2020 ◽  
Vol 21 (13) ◽  
pp. 4627
Author(s):  
Olivia Rastoin ◽  
Gilles Pagès ◽  
Maeva Dufies

Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.

2019 ◽  
Vol 19 (6) ◽  
pp. 434-442
Author(s):  
Liu Yang ◽  
Huan Meng ◽  
Dan Luo ◽  
Tingting Deng ◽  
Li Miao ◽  
...  

Background: Age-related macular degeneration (AMD) is a progressive and irreversible eye disease. The anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of neovascular AMD. However, the expense for such treatment is quite high. Methods: We used a traditional Chinese medicine ZQMT as an alternative therapeutic regimen for AMD. We employed two in vivo animal models mimicking dry and wet AMD respectively to assess the therapeutic efficacy of ZQMT on treating AMD-related retinopathy. AMD-related retinopathy in Crb1rd8 mice was evaluated from week 1 to 8 by fundus photography. Laser-induced choroidal neovascularization (CNV) was evaluated by fluorescein angiography and histopathology. Results: ZQMT increased CX3CR1 expression in murine CD4+ T cells either cultured in vitro or directly isolated from animals treated with ZQMT. We also performed both in vitro and in vivo studies to confirm that ZQMT has no apparent toxic effects. ZQMT alleviated AMD-related retinopathy in both Crb1rd8 and CNV models. Depletion of CCL2 and CX3CR1 in Crb1rd8 mice abolished the efficacy of ZQMT, suggesting that CCL2 and/or CX3CR1 may underlie the mechanisms of ZQMT in treating AMD-related retinopathy in mice. Conclusion: In summary, our study supports the protective roles of a traditional Chinese medicine ZQMT in AMD.


2021 ◽  
pp. 112067212110183
Author(s):  
Laurent Kodjikian ◽  
Carl Joe Mehanna ◽  
Salomon-Yves Cohen ◽  
François Devin ◽  
Sam Razavi ◽  
...  

Anti-vascular endothelial growth factor (VEGF) agents have transformed the management of patients with neovascular age-related macular degeneration (nAMD) over the past two decades. However, as more long-term real-world data become available, it is clear that treatment outcomes are inferior to those reported in large, controlled clinical trials. This is largely driven by undertreatment, that is, not maintaining a consistent injection frequency to achieve sustained VEGF suppression, whether due to patient non-compliance, an important injection burden, or non/incomplete anatomical response. Newer therapeutic advances under evaluation hold promise in achieving more, for less. We review the latest drugs currently in or having successfully finished phase III clinical trials, and determine their potential place in the management of patients with nAMD in Europe.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donita L. Garland ◽  
Eric A. Pierce ◽  
Rosario Fernandez-Godino

AbstractThe complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


Retina ◽  
2018 ◽  
Vol 38 (6) ◽  
pp. 1134-1144 ◽  
Author(s):  
Christoph Ehlken ◽  
Thomas Wilke ◽  
Ulrike Bauer-Steinhusen ◽  
Hansjürgen T. Agostini ◽  
Zoran Hasanbasic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document