scholarly journals Pt-, Rh-, Ru-, and Cu-Single-Wall Carbon Nanotubes Are Exceptional Candidates for Design of Anti-Viral Surfaces: A Theoretical Study

2020 ◽  
Vol 21 (15) ◽  
pp. 5211 ◽  
Author(s):  
Aref Aasi ◽  
Sadegh Aghaei ◽  
Matthew Moore ◽  
Balaji Panchapakesan

As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.

2005 ◽  
Vol 122 (21) ◽  
pp. 214710 ◽  
Author(s):  
Mirko Simeoni ◽  
Cinzia De Luca ◽  
Silvia Picozzi ◽  
Sandro Santucci ◽  
Bernard Delley

Carbon ◽  
2010 ◽  
Vol 48 (14) ◽  
pp. 4057-4062 ◽  
Author(s):  
A. Tapia ◽  
L. Aguilera ◽  
C. Cab ◽  
R.A. Medina-Esquivel ◽  
R. de Coss ◽  
...  

2012 ◽  
Vol 472-475 ◽  
pp. 1787-1791
Author(s):  
A Qing Chen ◽  
Qing Yi Shao ◽  
Li Wang

The hydrogen storage on single wall carbon is studied by using the first principle based on density functional theory (DFT). It concludes that the adsorption of hydrogen on the bare distorted single carbon nanotubes (SWNTs) can be enhanced dramatically when the single wall carbon nanotubes are rotated along the tubs axis. On the other hand, it suggests that the hydrogen storage capacity of SWNTs depend on the deformation angles.


Sign in / Sign up

Export Citation Format

Share Document