Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: A density functional based tight binding molecular dynamics study

2019 ◽  
Vol 40 (8) ◽  
pp. 952-958 ◽  
Author(s):  
Michael R. Mananghaya ◽  
Gil N. Santos ◽  
Dennis Yu
2002 ◽  
Vol 01 (03n04) ◽  
pp. 313-325 ◽  
Author(s):  
M. DAMNJANOVIĆ ◽  
I. MILOŠEVIĆ ◽  
T. VUKOVIĆ ◽  
B. NIKOLIĆ ◽  
E. DOBARDŽIĆ

The symmetry of single-wall carbon and inorganic tubes is reviewed. For the carbon nanotubes it is used to get the full set of quantum numbers, in the efficient precision (combined density functional and tight-binding methods) calculation of electronic bands and their complete assignation, to obtain the selection rules for optical transitions and the momenta matrix elements for the Bloch eigen-states. The optical characteristics are thoroughly found, and discussed.


2020 ◽  
Vol 21 (15) ◽  
pp. 5211 ◽  
Author(s):  
Aref Aasi ◽  
Sadegh Aghaei ◽  
Matthew Moore ◽  
Balaji Panchapakesan

As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.


2005 ◽  
Vol 122 (21) ◽  
pp. 214710 ◽  
Author(s):  
Mirko Simeoni ◽  
Cinzia De Luca ◽  
Silvia Picozzi ◽  
Sandro Santucci ◽  
Bernard Delley

2006 ◽  
Vol 129 (6) ◽  
pp. 705-716 ◽  
Author(s):  
Jennifer R. Lukes ◽  
Hongliang Zhong

Despite the significant amount of research on carbon nanotubes, the thermal conductivity of individual single-wall carbon nanotubes has not been well established. To date only a few groups have reported experimental data for these molecules. Existing molecular dynamics simulation results range from several hundred to 6600 W∕m K and existing theoretical predictions range from several dozens to 9500 W∕m K. To clarify the several-order-of-magnitude discrepancy in the literature, this paper utilizes molecular dynamics simulation to systematically examine the thermal conductivity of several individual (10, 10) single-wall carbon nanotubes as a function of length, temperature, boundary conditions and molecular dynamics simulation methodology. Nanotube lengths ranging from 5 nm to 40 nm are investigated. The results indicate that thermal conductivity increases with nanotube length, varying from about 10 W∕m to 375 W∕m K depending on the various simulation conditions. Phonon decay times on the order of hundreds of fs are computed. These times increase linearly with length, indicating ballistic transport in the nanotubes. A simple estimate of speed of sound, which does not require involved calculation of dispersion relations, is presented based on the heat current autocorrelation decay. Agreement with the majority of theoretical/computational literature thermal conductivity data is achieved for the nanotube lengths treated here. Discrepancies in thermal conductivity magnitude with experimental data are primarily attributed to length effects, although simulation methodology, stress, and intermolecular potential may also play a role. Quantum correction of the calculated results reveals thermal conductivity temperature dependence in qualitative agreement with experimental data.


Carbon ◽  
2010 ◽  
Vol 48 (14) ◽  
pp. 4057-4062 ◽  
Author(s):  
A. Tapia ◽  
L. Aguilera ◽  
C. Cab ◽  
R.A. Medina-Esquivel ◽  
R. de Coss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document