scholarly journals Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases

2020 ◽  
Vol 21 (17) ◽  
pp. 6312 ◽  
Author(s):  
Alazne Arrazola Sastre ◽  
Miriam Luque Montoro ◽  
Patricia Gálvez-Martín ◽  
Hadriano M Lacerda ◽  
Alejandro Lucia ◽  
...  

Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.

1998 ◽  
Vol 18 (12) ◽  
pp. 7444-7454 ◽  
Author(s):  
Gwo-Jen Day ◽  
Raymond D. Mosteller ◽  
Daniel Broek

ABSTRACT The Ras-related GTPases are small, 20- to 25-kDa proteins which cycle between an inactive GDP-bound form and an active GTP-bound state. The Ras superfamily includes the Ras, Rho, Ran, Arf, and Rab/YPT1 families, each of which controls distinct cellular functions. The crystal structures of Ras, Rac, Arf, and Ran reveal a nearly superimposible structure surrounding the GTP-binding pocket, and it is generally presumed that the Rab/YPT1 family shares this core structure. The Ras, Rac, Ran, Arf, and Rab/YPT1 families are activated by interaction with family-specific guanine nucleotide exchange factors (GEFs). The structural determinants of GTPases required for interaction with family-specific GEFs have begun to emerge. We sought to determine the sites on YPT1 which interact with GEFs. We found that mutations of YPT1 at position 42, 43, or 49 (effector loop; switch I), position 69, 71, 73, or 75 (switch II), and position 107, 109, or 115 (alpha-helix 3–loop 7 [α3-L7]) are intragenic suppressors of dominant interfering YPT1 mutant N22 (YPT1-N22), suggesting these mutations prevent YPT1-N22 from binding to and sequestering an endogenous GEF. Mutations at these positions prevent interaction with the DSS4 GEF in vitro. Mutations in the switch II and α3-L7 regions do not prevent downstream signaling in yeast when combined with a GTPase-defective (activating) mutation. Together, these results show that the YPT1 GTPase interacts with GEFs in a manner reminiscent of that for Ras and Arf in that these GTPases use divergent sequences corresponding to the switch I and II regions and α3-L7 of Ras to interact with family-specific GEFs. This finding suggests that GTPases of the Ras superfamily each may share common features of GEF-mediated guanine nucleotide exchange even though the GEFs for each of the Ras subfamilies appear evolutionarily unrelated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Natsuki Osaka ◽  
Yoshihisa Hirota ◽  
Doshun Ito ◽  
Yoshiki Ikeda ◽  
Ryo Kamata ◽  
...  

RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound “OFF” state and GTP-bound “ON” state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound “ON” state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.


1999 ◽  
Vol 147 (5) ◽  
pp. 921-928 ◽  
Author(s):  
Takashi Tatsumoto ◽  
Xiaozhen Xie ◽  
Rayah Blumenthal ◽  
Isamu Okamoto ◽  
Toru Miki

Animal cells divide into two daughter cells by the formation of an actomyosin-based contractile ring through a process called cytokinesis. Although many of the structural elements of cytokinesis have been identified, little is known about the signaling pathways and molecular mechanisms underlying this process. Here we show that the human ECT2 is involved in the regulation of cytokinesis. ECT2 catalyzes guanine nucleotide exchange on the small GTPases, RhoA, Rac1, and Cdc42. ECT2 is phosphorylated during G2 and M phases, and phosphorylation is required for its exchange activity. Unlike other known guanine nucleotide exchange factors for Rho GTPases, ECT2 exhibits nuclear localization in interphase, spreads throughout the cytoplasm in prometaphase, and is condensed in the midbody during cytokinesis. Expression of an ECT2 derivative, containing the NH2-terminal domain required for the midbody localization but lacking the COOH-terminal catalytic domain, strongly inhibits cytokinesis. Moreover, microinjection of affinity-purified anti-ECT2 antibody into interphase cells also inhibits cytokinesis. These results suggest that ECT2 is an important link between the cell cycle machinery and Rho signaling pathways involved in the regulation of cell division.


2008 ◽  
Vol 19 (9) ◽  
pp. 3823-3835 ◽  
Author(s):  
Shigeo Hara ◽  
Etsuko Kiyokawa ◽  
Shun-ichiro Iemura ◽  
Tohru Natsume ◽  
Thomas Wassmer ◽  
...  

DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.


2010 ◽  
Vol 78 (4) ◽  
pp. 1417-1425 ◽  
Author(s):  
Richard Bulgin ◽  
Benoit Raymond ◽  
James A. Garnett ◽  
Gad Frankel ◽  
Valerie F. Crepin ◽  
...  

ABSTRACT Subversion of Rho family small GTPases, which control actin dynamics, is a common infection strategy used by bacterial pathogens. In particular, Salmonella enterica serovar Typhimurium, Shigella flexneri, enteropathogenic Escherichia coli (EPEC), and enterohemorrhagic Escherichia coli (EHEC) translocate type III secretion system (T3SS) effector proteins to modulate the Rho GTPases RhoA, Cdc42, and Rac1, which trigger formation of stress fibers, filopodia, and lamellipodia/ruffles, respectively. The Salmonella effector SopE is a guanine nucleotide exchange factor (GEF) that activates Rac1 and Cdc42, which induce “the trigger mechanism of cell entry.” Based on a conserved Trp-xxx-Glu motif, the T3SS effector proteins IpgB1 and IpgB2 of Shigella, SifA and SifB of Salmonella, and Map of EPEC and EHEC were grouped together into a WxxxE family; recent studies identified the T3SS EPEC and EHEC effectors EspM and EspT as new family members. Recent structural and functional studies have shown that representatives of the WxxxE effectors share with SopE a 3-D fold and GEF activity. In this minireview, we summarize contemporary findings related to the SopE and WxxxE GEFs in the context of their role in subverting general host cell signaling pathways and infection.


2021 ◽  
Author(s):  
Monika Tucholska

The Fcγ receptor is a cell surface protein essential in the immune response that binds IgG-opsonized particles resulting in phagocytosis. Phagocytosis is a process used to remove pathogens and confine them in a vacuole that will enable their breakdown. The members of the Ras superfamily of small G proteins have been identified in samples where the activated Fcγ receptor complex was captured and analyzed using tandem mass spectrometry. The protein Rap. beloning to the Ras superfamily, guanosine triphosphatases (GTPase) activating proteins (GAPs), which promote the dissociation of GTP, and guanine nucleotide exchange factors (GEFs), that permits the exchange of GDP for GTP, were detected by SEQUEST in RAW 264.7 macrophages and futher analyzed using various methods. In this study, Raps, RasGAPs, and RapGEFs, were observed by tandem mass spectrometry and sequence correlation analysis. The selected isoforms were confirmed by Western blots, live cell confocal microscopy with fluorescent fusion constructs and antibody staining to verify the localization of Ras proetins, specifically Rap1, p120RasGAP and C3G, a RapGEF, to activated Fc reeceptor [sic].


1997 ◽  
Vol 139 (3) ◽  
pp. 797-807 ◽  
Author(s):  
Frank N. van Leeuwen ◽  
Hendrie E.T. Kain ◽  
Rob A. van der Kammen ◽  
Frits Michiels ◽  
Onno W. Kranenburg ◽  
...  

The invasion-inducing T-lymphoma invasion and metastasis 1 (Tiam1) protein functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. Differentiation-dependent expression of Tiam1 in the developing brain suggests a role for this GEF and its effector Rac1 in the control of neuronal morphology. Here we show that overexpression of Tiam1 induces cell spreading and affects neurite outgrowth in N1E-115 neuroblastoma cells. These effects are Rac-dependent and strongly promoted by laminin. Overexpression of Tiam1 recruits the α6β1 integrin, a laminin receptor, to specific adhesive contacts at the cell periphery, which are different from focal contacts. Cells overexpressing Tiam1 no longer respond to lysophosphatidic acid– induced neurite retraction and cell rounding, processes mediated by Rho, suggesting that Tiam1-induced activation of Rac antagonizes Rho signaling. This inhibition can be overcome by coexpression of constitutively active RhoA, which may indicate that regulation occurs at the level of Rho or upstream. Conversely, neurite formation induced by Tiam1 or Rac1 is further promoted by inactivating Rho. These results demonstrate that Rac- and Rho-mediated pathways oppose each other during neurite formation and that a balance between these pathways determines neuronal morphology. Furthermore, our data underscore the potential role of Tiam1 as a specific regulator of Rac during neurite formation and illustrate the importance of reciprocal interactions between the cytoskeleton and the extracellular matrix during this process.


2002 ◽  
Vol 115 (3) ◽  
pp. 629-640 ◽  
Author(s):  
Michel Souchet ◽  
Elodie Portales-Casamar ◽  
David Mazurais ◽  
Susanne Schmidt ◽  
Isabelle Léger ◽  
...  

The Rho small GTPases are crucial proteins involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. It has been reported that these GTPases are directly associated with cardiovascular disorders. In this context, we have searched for novel modulators of Rho GTPases, and here we describe p63RhoGEF a new Db1-like guanine nucleotide exchange factor (GEF). P63RhoGEF encodes a 63 kDa protein containing a Db1 homology domain in tandem with a pleckstrin homology domain and is most closely related to the second Rho GEF domain of Trio. Northern blot and in situ analysis have shown that p63RhoGEF is mainly expressed in heart and brain. In vitro guanine nucleotide exchange assays have shown that p63RhoGEF specifically acts on RhoA. Accordingly, p63RhoGEF expression induces RhoA-dependent stress fiber formation in fibroblasts and in H9C2 cardiac myoblasts. Moreover, we show that p63RhoGEF activation of RhoA in intact cells is dependent on the presence of the PH domain. Using a specific anti-p63RhoGEF antibody, we have detected the p63RhoGEF protein by immunocytochemistry in human heart and brain tissue sections. Confocal microscopy shows that p63RhoGEF is located in the sarcomeric I-band mainly constituted of cardiac sarcomeric actin. Together, these results show that p63RhoGEF is a RhoA-specific GEF that may play a key role in actin cytoskeleton reorganization in different tissues, especially in heart cellular morphology.


2019 ◽  
Vol 30 (12) ◽  
pp. 1523-1535 ◽  
Author(s):  
Jay M. Bhatt ◽  
William Hancock ◽  
Justyna M. Meissner ◽  
Aneta Kaczmarczyk ◽  
Eunjoo Lee ◽  
...  

The integrity of the Golgi and trans-Golgi network (TGN) is disrupted by brefeldin A (BFA), which inhibits the Golgi-localized BFA-sensitive factor (GBF1) and brefeldin A–inhibited guanine nucleotide-exchange factors (BIG1 and BIG2). Using a cellular replacement assay to assess GBF1 functionality without interference from the BIGs, we show that GBF1 alone maintains Golgi architecture; facilitates secretion; activates ADP-ribosylation factor (ARF)1, 3, 4, and 5; and recruits ARF effectors to Golgi membranes. Unexpectedly, GBF1 also supports TGN integrity and recruits numerous TGN-localized ARF effectors. The impact of the catalytic Sec7 domain (Sec7d) on GBF1 functionality was assessed by swapping it with the Sec7d from ARF nucleotide-binding site opener (ARNO)/cytohesin-2, a plasma membrane GEF reported to activate all ARFs. The resulting chimera (GBF1-ARNO-GBF1 [GARG]) targets like GBF1, supports Golgi/TGN architecture, and facilitates secretion. However, unlike GBF1, GARG activates all ARFs (including ARF6) at the Golgi/TGN and recruits additional ARF effectors to the Golgi/TGN. Our results have general implications: 1) GEF’s targeting is independent of Sec7d, but Sec7d influence the GEF substrate specificity and downstream effector events; 2) all ARFs have access to all membranes, but are restricted in their distribution by the localization of their activating GEFs; and 3) effector association with membranes requires the coincidental presence of activated ARFs and specific membrane identifiers.


Sign in / Sign up

Export Citation Format

Share Document