scholarly journals Functions of Cytochrome c Oxidase Assembly Factors

2020 ◽  
Vol 21 (19) ◽  
pp. 7254
Author(s):  
Shane A. Watson ◽  
Gavin P. McStay

Cytochrome c oxidase is the terminal complex of eukaryotic oxidative phosphorylation in mitochondria. This process couples the reduction of electron carriers during metabolism to the reduction of molecular oxygen to water and translocation of protons from the internal mitochondrial matrix to the inter-membrane space. The electrochemical gradient formed is used to generate chemical energy in the form of adenosine triphosphate to power vital cellular processes. Cytochrome c oxidase and most oxidative phosphorylation complexes are the product of the nuclear and mitochondrial genomes. This poses a series of topological and temporal steps that must be completed to ensure efficient assembly of the functional enzyme. Many assembly factors have evolved to perform these steps for insertion of protein into the inner mitochondrial membrane, maturation of the polypeptide, incorporation of co-factors and prosthetic groups and to regulate this process. Much of the information about each of these assembly factors has been gleaned from use of the single cell eukaryote Saccharomyces cerevisiae and also mutations responsible for human disease. This review will focus on the assembly factors of cytochrome c oxidase to highlight some of the outstanding questions in the assembly of this vital enzyme complex.

2007 ◽  
Vol 5 (1) ◽  
pp. 9-20 ◽  
Author(s):  
Scot C. Leary ◽  
Paul A. Cobine ◽  
Brett A. Kaufman ◽  
Guy-Hellen Guercin ◽  
Andre Mattman ◽  
...  

1980 ◽  
Vol 192 (1) ◽  
pp. 349-353 ◽  
Author(s):  
H Koenig ◽  
A Goldstone ◽  
C Y Lu

The gastrocnemius, a fast-twitch white muscle, and the soleus, a slow-twitch red muscle, were studied in A/J mice. The specific activities of the lysosomal hydrolases, beta-D-glucuronidase, hexosaminidase, beta-D-galactosidase and arylsulphatase, the inner-mitochondrial-membrane enzyme cytochrome c oxidase, and the outer-mitochondrial-membrane enzyme monoamine oxidase, were greater in the soleus than in the gastrocnemius. The specific activities of the lysosomal hydrolases and cytochrome c oxidase in the gastrocnemius and soleus were substantially higher in male mice than in female mice. Orchiectomy abolished this sex difference. Testosterone increased the activities of the lysosomal hydrolases and cytochrome c oxidase and coincidentally induced muscle hypertrophy and an accretion of protein and RNA, but total DNA remained constant. Monoamine oxidase was unaffected by sex, orchiectomy and testosterone. These findings indicate that endogenous androgens regulate the activity of enzymes associated with lysosomes and the inner mitochondrial membrane, as well as muscle fibre growth in mouse skeletal muscle.


1975 ◽  
Vol 150 (3) ◽  
pp. 373-377 ◽  
Author(s):  
N Collins ◽  
R H Brown ◽  
M J Merrett

Mitochondria were isolated by gradient centrifugation on linear sucrose gradients from broken cell suspensions of phototrophically grown Euglena gracilis. An antimycin A-sensitive but rotenone-insensitive glycollate-dependent oxygen uptake was demonstrated in isolated mitochondria. The partial reactions of glycollate-cytochrome c oxidoreductase and cytochrome c oxidase were demonstrated by using Euglena cytochrome c as exogenous electron acceptor/donor. Isolated mitochondria contain glycollate dehydrogenase and glyoxylate-glutamate aminotransferase and oxidize exogenous glycine. A P:O ratio of 1.7 was obtained for glycollate oxidation, consistent with glycollate electrons entering the Euglena respiratory chain at the flavoprotein level. The significance of these results is discussed in relation to photorespiration in algae.


1995 ◽  
Vol 307 (3) ◽  
pp. 657-661 ◽  
Author(s):  
S Prieto ◽  
F Bouillaud ◽  
E Rial

We have recently reported that ATP induces an uncoupling pathway in Saccharomyces cerevisiae mitochondria [Prieto, Bouillaud, Ricquier and Rial (1992) Eur. J. Biochem. 208, 487-491]. The presence of this pathway would explain the reported low efficiency of oxidative phosphorylation in S. cerevisiae, and may represent one of the postulated energy-dissipating mechanisms present in these yeasts. In this paper we demonstrate that ATP exerts its action in two steps: first, at low ATP/Pi ratios, it increases the respiratory-chain activity, probably by altering the kinetic properties of cytochrome c oxidase. Second, at higher ATP/Pi ratios, an increase in membrane permeability leads to a collapse in membrane potential. The ATP effect on cytochrome c oxidase corroborates a recent report showing that ATP interacts specifically with yeast cytochrome oxidase, stimulating its activity [Taanman and Capaldi (1993) J. Biol. Chem. 268, 18754-18761].


Sign in / Sign up

Export Citation Format

Share Document