PROTEIN PRECURSORS IN THE ASSEMBLY OF YEAST CYTOCHROME c OXIDASE, A TRANSMEMBRANOUS OLIGOMER OF THE INNER MITOCHONDRIAL MEMBRANE

1980 ◽  
Vol 343 (1 Precursor Pro) ◽  
pp. 275-292 ◽  
Author(s):  
R.O. Poyton ◽  
K. Sevarino ◽  
C. George-Nascimento ◽  
S.D. Power
1980 ◽  
Vol 192 (1) ◽  
pp. 349-353 ◽  
Author(s):  
H Koenig ◽  
A Goldstone ◽  
C Y Lu

The gastrocnemius, a fast-twitch white muscle, and the soleus, a slow-twitch red muscle, were studied in A/J mice. The specific activities of the lysosomal hydrolases, beta-D-glucuronidase, hexosaminidase, beta-D-galactosidase and arylsulphatase, the inner-mitochondrial-membrane enzyme cytochrome c oxidase, and the outer-mitochondrial-membrane enzyme monoamine oxidase, were greater in the soleus than in the gastrocnemius. The specific activities of the lysosomal hydrolases and cytochrome c oxidase in the gastrocnemius and soleus were substantially higher in male mice than in female mice. Orchiectomy abolished this sex difference. Testosterone increased the activities of the lysosomal hydrolases and cytochrome c oxidase and coincidentally induced muscle hypertrophy and an accretion of protein and RNA, but total DNA remained constant. Monoamine oxidase was unaffected by sex, orchiectomy and testosterone. These findings indicate that endogenous androgens regulate the activity of enzymes associated with lysosomes and the inner mitochondrial membrane, as well as muscle fibre growth in mouse skeletal muscle.


2017 ◽  
Vol 45 (3) ◽  
pp. 813-829 ◽  
Author(s):  
Peter R. Rich

Mitochondrial cytochrome c oxidase is a member of a diverse superfamily of haem–copper oxidases. Its mechanism of oxygen reduction is reviewed in terms of the cycle of catalytic intermediates and their likely chemical structures. This reaction cycle is coupled to the translocation of protons across the inner mitochondrial membrane in which it is located. The likely mechanism by which this occurs, derived in significant part from studies of bacterial homologues, is presented. These mechanisms of catalysis and coupling, together with current alternative proposals of underlying mechanisms, are critically reviewed.


2001 ◽  
Vol 29 (4) ◽  
pp. 436-441 ◽  
Author(s):  
D. Forsha ◽  
C. Church ◽  
P. Wazny ◽  
R. O. Poyton

The assembly of cytochrome c oxidase in the inner mitochondrial membranes of eukaryotic cells requires the protein products of a large number of nuclear genes. In yeast, some of these act globally and affect the assembly of several respiratory-chain protein complexes, whereas others act in a cytochrome c oxidase-specific fashion. Many of these yeast proteins have human counterparts, which when mutated lead to energy-related diseases. One of these proteins, Pet100p, is a novel molecular chaperone that functions to incorporate a subcomplex containing cytochrome c oxidase subunits VII, VIIa and VIII into holo-(cytochrome c oxidase). Here we report the topological disposition of Pet100p in the inner mitochondrial membrane and show that its C-terminal domain is essential for its function as a cytochrome c oxidase-specific ‘assembly facilitator’.


1986 ◽  
Vol 64 (11) ◽  
pp. 1195-1210 ◽  
Author(s):  
A. Trivedi ◽  
D. J. Fantin ◽  
E. Reno Tustanoff

The nature of the interactions between cytochrome c oxidase and the phospholipids in mitochondrial membranes has been investigated by varying the nature of the fatty acyl components of Saccharomyces cerevisiae. A double fatty acid yeast mutant, FAI-4C, grown in combinations of unsaturated (oleic, linoleic, linolenic, and eicosenoic) and saturated (lauric and palmitic) fatty acids, was employed to modify mitochondrial membranes. The supplemented fatty acids constituted a unique combination of different acyl chain lengths with varying degrees of unsaturation which were subsequently incorporated into mitochondrial phospholipids. Phosphatidylethanolamine and cardiolipin, the predominant phospholipids of the inner mitochondrial membrane, were characterized by their high levels of supplemented unsaturated fatty acids. Increasing the chain length or the degree of unsaturation of mitochondrial membrane phospholipids had no effect on altering the nature of the phospholipid polar head group but did result in a profound change on the specific activity of cytochrome c oxidase. When studied under conditions of different ionic strengths and pHs the enzyme's activity, as documented by Eadie–Hofstee plots, showed biphasic kinetics. The kinetic parameters for the low affinity reaction were greatly influenced by the changes in the membrane fatty acids and only marginal effects were noted at the high affinity reaction site. The discontinuities in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, monitored at increasing temperatures, suggested that changes in membrane fluidity were conditioned by alterations in mitochondrial membrane fatty acid constituents. These results indicate that the lipid changes affecting the low affinity binding site of cytochrome c oxidase may be the result of lipid–protein interactions which lead to enzyme conformational changes or may be due to gross changes in membrane fluidity. It may, therefore, follow that this enzyme site may be embedded in or be juxtaposed to the outer surface of the inner mitochondrial membrane bilayer in contrast to the high affinity site which has been shown to be significantly above the membrane plane.


2010 ◽  
Vol 298 (3) ◽  
pp. R608-R616 ◽  
Author(s):  
N. T. Frick ◽  
J. S. Bystriansky ◽  
Y. K. Ip ◽  
S. F. Chew ◽  
J. S. Ballantyne

We examined some of the potential mechanisms lungfish ( Protopterus dolloi ) use to regulate cytochrome c oxidase (CCO), during metabolic depression. CCO activity was reduced by 67% in isolated liver mitochondria of estivating fish. This was likely accomplished, in part, by the 46% reduction in CCO subunit I protein expression in the liver. No change in the mRNA expression levels of CCO subunits I, II, III, and IV were found in the liver, suggesting CCO is under translational regulation; however, in the kidney, messenger limitation may be a factor as the expression of subunits I and II were depressed (∼10-fold) during estivation, suggesting tissue-specific mechanisms of regulation. CCO is influenced by mitochondrial membrane phospholipids, particularly cardiolipin (CL). In P. dolloi , the phospholipid composition of the liver mitochondrial membrane changed during estivation, with a ∼2.3-fold reduction in the amount of CL. Significant positive correlations were found between CCO activity and the amount of CL and phosphatidylethanolamine within the mitochondrial membrane. It appears CCO activity is regulated through multiple mechanisms in P. dolloi , and individual subunits of CCO are regulated independently, and in a tissue-specific manner. It is proposed that altering the amount of CL within the mitochondrial membrane may be a means of regulating CCO activity during metabolical depression in the African lungfish, P. dolloi .


2006 ◽  
Vol 14 (3) ◽  
pp. 597-606 ◽  
Author(s):  
S-Y Choi ◽  
F Gonzalvez ◽  
G M Jenkins ◽  
C Slomianny ◽  
D Chretien ◽  
...  

1978 ◽  
pp. 85-94
Author(s):  
Mårten Wikström ◽  
Herkko Saari ◽  
Timo Penttilä ◽  
Matti Saraste

Sign in / Sign up

Export Citation Format

Share Document