Regulation of Cytochrome c Oxidase by Adenylic Nucleotides. Is Oxidative Phosphorylation Feedback Regulated by its End-Products?

IUBMB Life ◽  
2001 ◽  
Vol 52 (3-5) ◽  
pp. 143-152 ◽  
Author(s):  
Bertrand Beauvoit ◽  
Michel Rigoulet
1975 ◽  
Vol 150 (3) ◽  
pp. 373-377 ◽  
Author(s):  
N Collins ◽  
R H Brown ◽  
M J Merrett

Mitochondria were isolated by gradient centrifugation on linear sucrose gradients from broken cell suspensions of phototrophically grown Euglena gracilis. An antimycin A-sensitive but rotenone-insensitive glycollate-dependent oxygen uptake was demonstrated in isolated mitochondria. The partial reactions of glycollate-cytochrome c oxidoreductase and cytochrome c oxidase were demonstrated by using Euglena cytochrome c as exogenous electron acceptor/donor. Isolated mitochondria contain glycollate dehydrogenase and glyoxylate-glutamate aminotransferase and oxidize exogenous glycine. A P:O ratio of 1.7 was obtained for glycollate oxidation, consistent with glycollate electrons entering the Euglena respiratory chain at the flavoprotein level. The significance of these results is discussed in relation to photorespiration in algae.


1995 ◽  
Vol 307 (3) ◽  
pp. 657-661 ◽  
Author(s):  
S Prieto ◽  
F Bouillaud ◽  
E Rial

We have recently reported that ATP induces an uncoupling pathway in Saccharomyces cerevisiae mitochondria [Prieto, Bouillaud, Ricquier and Rial (1992) Eur. J. Biochem. 208, 487-491]. The presence of this pathway would explain the reported low efficiency of oxidative phosphorylation in S. cerevisiae, and may represent one of the postulated energy-dissipating mechanisms present in these yeasts. In this paper we demonstrate that ATP exerts its action in two steps: first, at low ATP/Pi ratios, it increases the respiratory-chain activity, probably by altering the kinetic properties of cytochrome c oxidase. Second, at higher ATP/Pi ratios, an increase in membrane permeability leads to a collapse in membrane potential. The ATP effect on cytochrome c oxidase corroborates a recent report showing that ATP interacts specifically with yeast cytochrome oxidase, stimulating its activity [Taanman and Capaldi (1993) J. Biol. Chem. 268, 18754-18761].


Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2569-2576 ◽  
Author(s):  
Zhengshan Zhao ◽  
Chunying Zhao ◽  
Xu Hannah Zhang ◽  
Feng Zheng ◽  
Weijing Cai ◽  
...  

Advanced glycation end products (AGEs) are implicated in diabetic complications. However, their role in β-cell dysfunction is less clear. In this study we examined the effects of AGEs on islet function in mice and in isolated islets. AGE-BSA or BSA was administered ip to normal mice twice a day for 2 wk. We showed that AGE-BSA-treated mice exhibited significantly higher glucose levels and lower insulin levels in response to glucose challenge than did BSA-treated mice, although there were no significant differences in insulin sensitivity and islet morphology between two groups. Glucose-stimulated insulin secretion by islets of the AGE-BSA-treated mice or AGE-BSA-treated normal islets was significantly lower than that by islets isolated from the BSA-treated mice or BSA-treated normal islets. Furthermore, AGE treatment of islet β-cells inhibited ATP production, and glimepiride, a sulfonylurea derivative, restored glucose-stimulated insulin secretion. Further investigation indicated that AGEs inhibited cytochrome c oxidase activity by inducing the expression of inducible nitric oxide synthase (iNOS). Blocking the formation of nitric oxide with an iNOS selective inhibitor aminoguanidine reversed the inhibitory effects of AGEs on ATP production and insulin secretion. We conclude that AGEs inhibit cytochrome c oxidase and ATP production, leading to the impairment of glucose-stimulated insulin secretion through iNOS-dependent nitric oxide production.


1997 ◽  
Vol 200 (1) ◽  
pp. 83-92 ◽  
Author(s):  
S Vökel ◽  
M K Grieshaber

Oxygen consumption, ATP production and cytochrome c oxidase activity of isolated mitochondria from body-wall tissue of Arenicola marina were measured as a function of sulphide concentration, and the effect of inhibitors of the respiratory complexes on these processes was determined. Concentrations of sulphide between 6 and 9 µmol l-1 induced oxygen consumption with a respiratory control ratio of 1.7. Production of ATP was stimulated by the addition of sulphide, reaching a maximal value of 67 nmol min-1 mg-1 protein at a sulphide concentration of 8 µmol l-1. Under these conditions, 1 mole of ATP was formed per mole of sulphide consumed. Higher concentrations of sulphide led to a decrease in ATP production until complete inhibition occurred at approximately 50 µmol l-1. The production of ATP with malate and succinate was stimulated by approximately 15 % in the presence of 4 µmol l-1 sulphide, but decreased at sulphide concentrations higher than 15­20 µmol l-1. Cytochrome c oxidase was also inhibited by sulphide, showing half-maximal inhibition at 1.5 µmol l-1 sulphide. Sulphide-induced ATP production was inhibited by antimycin, cyanide and oligomycin but not by rotenone or salicylhydroxamic acid. The present data indicate that sulphide oxidation is coupled to oxidative phosphorylation solely by electron flow through cytochrome c oxidase, whereas the alternative oxidase does not serve as a coupling site. At sulphide concentrations higher than 20 µmol l-1, oxidation of sulphide serves mainly as a detoxification process rather than as a source of energy.


2008 ◽  
Vol 28 (47) ◽  
pp. 12581-12590 ◽  
Author(s):  
A. Aschrafi ◽  
A. D. Schwechter ◽  
M. G. Mameza ◽  
O. Natera-Naranjo ◽  
A. E. Gioio ◽  
...  

2014 ◽  
Vol 117 (12) ◽  
pp. 1431-1439 ◽  
Author(s):  
David F. Wilson ◽  
Sergei A. Vinogradov

Mitochondrial oxidative phosphorylation has a central role in eukaryotic metabolism, providing the energy (ATP) required for survival. Regulation of this important pathway is, however, still not understood, largely due to limitations in the ability to measure the essential metabolites, including oxygen (pO2, oxygen pressure), ADP, and AMP. In addition, neither the mechanism of oxygen reduction by mitochondrial cytochrome c oxidase nor how its rate is controlled is understood, although this enzyme determines the rate of oxygen consumption and thereby the rate of ATP synthesis. Cytochrome c oxidase is responsible for reduction of molecular oxygen to water using reducing equivalents donated by cytochrome c and for site 3 energy coupling in oxidative phosphorylation. A mechanism-based model of the cytochrome c oxidase reaction is presented in which transfer of reducing equivalents from the lower- to the higher-potential region of the coupling site occurs against an opposing energy barrier, Q. The steady-state rate equation is fitted to data for the dependence of mitochondrial respiratory rate on cytochrome c reduction, oxygen pressure (pO2), and [ATP]/[ADP][Pi] at pH 6.5 to 8.35 (where Pi is inorganic phosphate). The fit of the rate expression to the experimental data is very good for all experimental conditions. Levels of the intermediates in oxygen reduction in the oxidase reaction site have been calculated. An intermediate in the reaction, tentatively identified as peroxide, bridged between the iron and copper atoms of the reaction site has a central role in coupling mitochondrial respiration to the [ATP]/[ADP][Pi].


Sign in / Sign up

Export Citation Format

Share Document